batch_size = 32 img_height = 180 img_width = 180 train_ds = tf.keras.utils.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.utils.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names print(class_names) import matplotlib.pyplot as plt plt.figure(figsize=(10, 10)) for images, labels in train_ds.take(1): for i in range(9): ax = plt.subplot(3, 3, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") for image_batch, labels_batch in train_ds: print(image_batch.shape) print(labels_batch.shape) break AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) normalization_layer = layers.Rescaling(1./255) normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) image_batch, labels_batch = next(iter(normalized_ds)) first_image = image_batch[0] # Notice the pixel values are now in `[0,1]`. print(np.min(first_image), np.max(first_image)) data_augmentation = keras.Sequential( [ layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)), layers.RandomRotation(0.1), layers.RandomZoom(0.1), ] ) plt.figure(figsize=(10, 10)) for images, _ in train_ds.take(1): for i in range(9): augmented_images = data_augmentation(images) ax = plt.subplot(3, 3, i + 1) plt.imshow(augmented_images[0].numpy().astype("uint8")) plt.axis("off") num_classes = len(class_names) model = Sequential([ data_augmentation, layers.Rescaling(1./255), layers.Conv2D(16, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(32, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(64, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Dropout(0.2), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dense(num_classes, name="outputs") ]) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() epochs = 15 history = model.fit( train_ds, validation_data=val_ds, epochs=epochs ) import gradio as gr import numpy as np import tensorflow as tf def predict_image(img): img = np.array(img) img_resized = tf.image.resize(img, (180, 180)) img_4d = tf.expand_dims(img_resized, axis=0) prediction = model.predict(img_4d)[0] return {class_names[i]: float(prediction[i]) for i in range(len(class_names))} image = gr.Image() label = gr.Label(num_top_classes=12) # Define custom CSS for background image custom_css = """ body { background-image: url('\extracted_files\Pest_Dataset\bees\bees (444).jpg'); background-size: cover; background-repeat: no-repeat; background-attachment: fixed; color: white; } """ gr.Interface( fn=predict_image, inputs=image, outputs=label, title="Welcome to Agricultural Pest Image Classification", description="The image data set used was obtaied from Kaggle and has a collection of 12 different types of agricultral pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils", css=custom_css ).launch(debug=True)