NORLIE JHON MALAGDAO commited on
Commit
dd45bd2
·
verified ·
1 Parent(s): 8e0a53d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -144,16 +144,13 @@ model = Sequential([
144
  layers.Dropout(0.2),
145
  layers.Flatten(),
146
  layers.Dense(128, activation='relu'),
147
- layers.Dense(num_classes, name="outputs")
148
  ])
149
 
150
-
151
  model.compile(optimizer='adam',
152
- loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
153
  metrics=['accuracy'])
154
 
155
-
156
-
157
  model.summary()
158
 
159
 
@@ -165,6 +162,7 @@ history = model.fit(
165
  )
166
 
167
 
 
168
  import gradio as gr
169
  import numpy as np
170
  import tensorflow as tf
@@ -176,7 +174,6 @@ def predict_image(img):
176
  prediction = model.predict(img_4d)[0]
177
  return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
178
 
179
-
180
  image = gr.Image()
181
  label = gr.Label(num_top_classes=12)
182
 
 
144
  layers.Dropout(0.2),
145
  layers.Flatten(),
146
  layers.Dense(128, activation='relu'),
147
+ layers.Dense(num_classes, activation='softmax', name="outputs") # Use softmax here
148
  ])
149
 
 
150
  model.compile(optimizer='adam',
151
+ loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), # Change from_logits to False
152
  metrics=['accuracy'])
153
 
 
 
154
  model.summary()
155
 
156
 
 
162
  )
163
 
164
 
165
+
166
  import gradio as gr
167
  import numpy as np
168
  import tensorflow as tf
 
174
  prediction = model.predict(img_4d)[0]
175
  return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
176
 
 
177
  image = gr.Image()
178
  label = gr.Label(num_top_classes=12)
179