Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import matplotlib.pyplot as plt
|
3 |
import numpy as np
|
@@ -93,24 +95,23 @@ data_augmentation = keras.Sequential([
|
|
93 |
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
94 |
layers.RandomRotation(0.1),
|
95 |
layers.RandomZoom(0.1),
|
96 |
-
layers.RandomContrast(0.1),
|
97 |
])
|
98 |
|
99 |
-
|
100 |
-
base_model = tf.keras.applications.MobileNetV2(input_shape=(img_height, img_width, 3),
|
101 |
-
include_top=False,
|
102 |
-
weights='imagenet')
|
103 |
-
base_model.trainable = False # Freeze the base model
|
104 |
|
105 |
-
# Add custom layers on top of the pretrained model
|
106 |
model = Sequential([
|
107 |
data_augmentation,
|
108 |
layers.Rescaling(1./255),
|
109 |
-
|
110 |
-
layers.
|
|
|
|
|
|
|
|
|
111 |
layers.Dropout(0.2),
|
|
|
112 |
layers.Dense(128, activation='relu'),
|
113 |
-
layers.Dense(
|
114 |
])
|
115 |
|
116 |
model.compile(optimizer='adam',
|
@@ -126,19 +127,14 @@ history = model.fit(
|
|
126 |
|
127 |
def predict_image(img):
|
128 |
img = np.array(img)
|
129 |
-
img_resized = tf.image.resize(img, (
|
130 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
131 |
prediction = model.predict(img_4d)[0]
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
if max_probability == 1.0:
|
136 |
-
return {class_names[max_index]: float(max_probability)}
|
137 |
-
else:
|
138 |
-
return {"None": "No class with 100% confidence"}
|
139 |
|
140 |
image = gr.Image()
|
141 |
-
label = gr.Label(num_top_classes=
|
142 |
|
143 |
gr.Interface(
|
144 |
fn=predict_image,
|
|
|
1 |
+
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import matplotlib.pyplot as plt
|
5 |
import numpy as np
|
|
|
95 |
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
96 |
layers.RandomRotation(0.1),
|
97 |
layers.RandomZoom(0.1),
|
|
|
98 |
])
|
99 |
|
100 |
+
num_classes = 12
|
|
|
|
|
|
|
|
|
101 |
|
|
|
102 |
model = Sequential([
|
103 |
data_augmentation,
|
104 |
layers.Rescaling(1./255),
|
105 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
106 |
+
layers.MaxPooling2D(),
|
107 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
108 |
+
layers.MaxPooling2D(),
|
109 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
110 |
+
layers.MaxPooling2D(),
|
111 |
layers.Dropout(0.2),
|
112 |
+
layers.Flatten(),
|
113 |
layers.Dense(128, activation='relu'),
|
114 |
+
layers.Dense(num_classes, name="outputs")
|
115 |
])
|
116 |
|
117 |
model.compile(optimizer='adam',
|
|
|
127 |
|
128 |
def predict_image(img):
|
129 |
img = np.array(img)
|
130 |
+
img_resized = tf.image.resize(img, (180, 180))
|
131 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
132 |
prediction = model.predict(img_4d)[0]
|
133 |
+
probabilities = tf.nn.softmax(prediction).numpy()
|
134 |
+
return {class_names[i]: float(probabilities[i]) for i in range(len(class_names))}
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
image = gr.Image()
|
137 |
+
label = gr.Label(num_top_classes=12)
|
138 |
|
139 |
gr.Interface(
|
140 |
fn=predict_image,
|