NORLIE JHON MALAGDAO commited on
Commit
94d1d20
·
verified ·
1 Parent(s): 61bcdb6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -13
app.py CHANGED
@@ -105,42 +105,37 @@ for images, _ in train_ds.take(1):
105
  plt.imshow(augmented_images[0].numpy().astype("uint8"))
106
  plt.axis("off")
107
 
108
- # Define a deeper CNN model with more regularization techniques
109
  num_classes = len(class_names)
110
  model = Sequential([
111
  data_augmentation,
112
  layers.Rescaling(1./255),
113
 
114
- layers.Conv2D(32, 3, padding='same', activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)),
115
- layers.BatchNormalization(),
116
  layers.MaxPooling2D(),
117
 
118
- layers.Conv2D(64, 3, padding='same', activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)),
119
- layers.BatchNormalization(),
120
  layers.MaxPooling2D(),
121
 
122
- layers.Conv2D(128, 3, padding='same', activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)),
123
- layers.BatchNormalization(),
124
  layers.MaxPooling2D(),
125
 
126
- layers.Conv2D(256, 3, padding='same', activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)),
127
- layers.BatchNormalization(),
128
  layers.MaxPooling2D(),
129
 
130
- layers.Conv2D(512, 3, padding='same', activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)),
131
- layers.BatchNormalization(),
132
  layers.MaxPooling2D(),
133
 
134
  layers.Dropout(0.5),
135
  layers.Flatten(),
136
 
137
- layers.Dense(256, activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)),
138
  layers.Dropout(0.5),
139
 
140
  layers.Dense(num_classes, activation='softmax', name="outputs")
141
  ])
142
 
143
- model.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-4),
144
  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
145
  metrics=['accuracy'])
146
 
 
105
  plt.imshow(augmented_images[0].numpy().astype("uint8"))
106
  plt.axis("off")
107
 
108
+ # Define a deeper CNN model with softmax activation in the final layer
109
  num_classes = len(class_names)
110
  model = Sequential([
111
  data_augmentation,
112
  layers.Rescaling(1./255),
113
 
114
+ layers.Conv2D(32, 3, padding='same', activation='relu'),
 
115
  layers.MaxPooling2D(),
116
 
117
+ layers.Conv2D(64, 3, padding='same', activation='relu'),
 
118
  layers.MaxPooling2D(),
119
 
120
+ layers.Conv2D(128, 3, padding='same', activation='relu'),
 
121
  layers.MaxPooling2D(),
122
 
123
+ layers.Conv2D(256, 3, padding='same', activation='relu'),
 
124
  layers.MaxPooling2D(),
125
 
126
+ layers.Conv2D(512, 3, padding='same', activation='relu'),
 
127
  layers.MaxPooling2D(),
128
 
129
  layers.Dropout(0.5),
130
  layers.Flatten(),
131
 
132
+ layers.Dense(256, activation='relu'),
133
  layers.Dropout(0.5),
134
 
135
  layers.Dense(num_classes, activation='softmax', name="outputs")
136
  ])
137
 
138
+ model.compile(optimizer='adam',
139
  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
140
  metrics=['accuracy'])
141