Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -105,42 +105,37 @@ for images, _ in train_ds.take(1):
|
|
105 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
106 |
plt.axis("off")
|
107 |
|
108 |
-
# Define a deeper CNN model with
|
109 |
num_classes = len(class_names)
|
110 |
model = Sequential([
|
111 |
data_augmentation,
|
112 |
layers.Rescaling(1./255),
|
113 |
|
114 |
-
layers.Conv2D(32, 3, padding='same', activation='relu'
|
115 |
-
layers.BatchNormalization(),
|
116 |
layers.MaxPooling2D(),
|
117 |
|
118 |
-
layers.Conv2D(64, 3, padding='same', activation='relu'
|
119 |
-
layers.BatchNormalization(),
|
120 |
layers.MaxPooling2D(),
|
121 |
|
122 |
-
layers.Conv2D(128, 3, padding='same', activation='relu'
|
123 |
-
layers.BatchNormalization(),
|
124 |
layers.MaxPooling2D(),
|
125 |
|
126 |
-
layers.Conv2D(256, 3, padding='same', activation='relu'
|
127 |
-
layers.BatchNormalization(),
|
128 |
layers.MaxPooling2D(),
|
129 |
|
130 |
-
layers.Conv2D(512, 3, padding='same', activation='relu'
|
131 |
-
layers.BatchNormalization(),
|
132 |
layers.MaxPooling2D(),
|
133 |
|
134 |
layers.Dropout(0.5),
|
135 |
layers.Flatten(),
|
136 |
|
137 |
-
layers.Dense(256, activation='relu'
|
138 |
layers.Dropout(0.5),
|
139 |
|
140 |
layers.Dense(num_classes, activation='softmax', name="outputs")
|
141 |
])
|
142 |
|
143 |
-
model.compile(optimizer=
|
144 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
145 |
metrics=['accuracy'])
|
146 |
|
|
|
105 |
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
106 |
plt.axis("off")
|
107 |
|
108 |
+
# Define a deeper CNN model with softmax activation in the final layer
|
109 |
num_classes = len(class_names)
|
110 |
model = Sequential([
|
111 |
data_augmentation,
|
112 |
layers.Rescaling(1./255),
|
113 |
|
114 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
|
|
115 |
layers.MaxPooling2D(),
|
116 |
|
117 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
|
|
118 |
layers.MaxPooling2D(),
|
119 |
|
120 |
+
layers.Conv2D(128, 3, padding='same', activation='relu'),
|
|
|
121 |
layers.MaxPooling2D(),
|
122 |
|
123 |
+
layers.Conv2D(256, 3, padding='same', activation='relu'),
|
|
|
124 |
layers.MaxPooling2D(),
|
125 |
|
126 |
+
layers.Conv2D(512, 3, padding='same', activation='relu'),
|
|
|
127 |
layers.MaxPooling2D(),
|
128 |
|
129 |
layers.Dropout(0.5),
|
130 |
layers.Flatten(),
|
131 |
|
132 |
+
layers.Dense(256, activation='relu'),
|
133 |
layers.Dropout(0.5),
|
134 |
|
135 |
layers.Dense(num_classes, activation='softmax', name="outputs")
|
136 |
])
|
137 |
|
138 |
+
model.compile(optimizer='adam',
|
139 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
140 |
metrics=['accuracy'])
|
141 |
|