Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,6 +15,8 @@ import gdown
|
|
| 15 |
import zipfile
|
| 16 |
import pathlib
|
| 17 |
|
|
|
|
|
|
|
| 18 |
# Define the Google Drive shareable link
|
| 19 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 20 |
|
|
@@ -53,77 +55,87 @@ for root, dirs, files in os.walk(extracted_path):
|
|
| 53 |
subindent = ' ' * 4 * (level + 1)
|
| 54 |
for f in files:
|
| 55 |
print(f"{subindent}{f}")
|
|
|
|
| 56 |
|
|
|
|
|
|
|
| 57 |
# Path to the dataset directory
|
| 58 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
|
|
|
| 62 |
|
|
|
|
|
|
|
| 63 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
| 80 |
|
| 81 |
class_names = train_ds.class_names
|
| 82 |
print(class_names)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
| 84 |
plt.figure(figsize=(10, 10))
|
| 85 |
for images, labels in train_ds.take(1):
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
# Define data augmentation
|
| 93 |
-
data_augmentation = keras.Sequential([
|
| 94 |
-
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
| 95 |
-
layers.RandomRotation(0.1),
|
| 96 |
-
layers.RandomZoom(0.1),
|
| 97 |
-
])
|
| 98 |
|
| 99 |
num_classes = 12
|
| 100 |
|
| 101 |
model = Sequential([
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
layers.Dense(128, activation='relu'),
|
| 113 |
-
layers.Dense(num_classes, name="outputs")
|
| 114 |
])
|
| 115 |
|
|
|
|
| 116 |
model.compile(optimizer='adam',
|
| 117 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
| 118 |
metrics=['accuracy'])
|
| 119 |
|
| 120 |
-
epochs
|
| 121 |
history = model.fit(
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
)
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
def predict_image(img):
|
| 128 |
img = np.array(img)
|
| 129 |
img_resized = tf.image.resize(img, (180, 180))
|
|
@@ -131,13 +143,26 @@ def predict_image(img):
|
|
| 131 |
prediction = model.predict(img_4d)[0]
|
| 132 |
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
| 133 |
|
| 134 |
-
|
|
|
|
| 135 |
label = gr.Label(num_top_classes=5)
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
gr.Interface(
|
| 138 |
-
fn=predict_image,
|
| 139 |
-
inputs=image,
|
| 140 |
-
outputs=label,
|
| 141 |
title="Pest Classification",
|
| 142 |
-
description="Upload an image of a pest to classify it into one of the predefined categories."
|
|
|
|
| 143 |
).launch(debug=True)
|
|
|
|
| 15 |
import zipfile
|
| 16 |
import pathlib
|
| 17 |
|
| 18 |
+
|
| 19 |
+
|
| 20 |
# Define the Google Drive shareable link
|
| 21 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
| 22 |
|
|
|
|
| 55 |
subindent = ' ' * 4 * (level + 1)
|
| 56 |
for f in files:
|
| 57 |
print(f"{subindent}{f}")
|
| 58 |
+
|
| 59 |
|
| 60 |
+
# Path to the dataset directory
|
| 61 |
+
import pathlib
|
| 62 |
# Path to the dataset directory
|
| 63 |
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
| 64 |
+
data_dir = pathlib.Path(data_dir)
|
| 65 |
|
| 66 |
+
bees = list(data_dir.glob('bees/*'))
|
| 67 |
+
print(bees[0])
|
| 68 |
+
PIL.Image.open(str(bees[0]))
|
| 69 |
|
| 70 |
+
img_height,img_width=180,180
|
| 71 |
+
batch_size=32
|
| 72 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 73 |
+
data_dir,
|
| 74 |
+
validation_split=0.2,
|
| 75 |
+
subset="training",
|
| 76 |
+
seed=123,
|
| 77 |
+
image_size=(img_height, img_width),
|
| 78 |
+
batch_size=batch_size)
|
| 79 |
+
|
| 80 |
|
| 81 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
| 82 |
+
data_dir,
|
| 83 |
+
validation_split=0.2,
|
| 84 |
+
subset="validation",
|
| 85 |
+
seed=123,
|
| 86 |
+
image_size=(img_height, img_width),
|
| 87 |
+
batch_size=batch_size)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
|
| 91 |
class_names = train_ds.class_names
|
| 92 |
print(class_names)
|
| 93 |
|
| 94 |
+
|
| 95 |
+
import matplotlib.pyplot as plt
|
| 96 |
+
|
| 97 |
plt.figure(figsize=(10, 10))
|
| 98 |
for images, labels in train_ds.take(1):
|
| 99 |
+
for i in range(9):
|
| 100 |
+
ax = plt.subplot(3, 3, i + 1)
|
| 101 |
+
plt.imshow(images[i].numpy().astype("uint8"))
|
| 102 |
+
plt.title(class_names[labels[i]])
|
| 103 |
+
plt.axis("off")
|
| 104 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
num_classes = 12
|
| 107 |
|
| 108 |
model = Sequential([
|
| 109 |
+
layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
|
| 110 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
| 111 |
+
layers.MaxPooling2D(),
|
| 112 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
| 113 |
+
layers.MaxPooling2D(),
|
| 114 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
| 115 |
+
layers.MaxPooling2D(),
|
| 116 |
+
layers.Flatten(),
|
| 117 |
+
layers.Dense(128, activation='relu'),
|
| 118 |
+
layers.Dense(num_classes,activation='softmax')
|
|
|
|
|
|
|
| 119 |
])
|
| 120 |
|
| 121 |
+
|
| 122 |
model.compile(optimizer='adam',
|
| 123 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
| 124 |
metrics=['accuracy'])
|
| 125 |
|
| 126 |
+
epochs=10
|
| 127 |
history = model.fit(
|
| 128 |
+
train_ds,
|
| 129 |
+
validation_data=val_ds,
|
| 130 |
+
epochs=epochs
|
| 131 |
)
|
| 132 |
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
import gradio as gr
|
| 136 |
+
import numpy as np
|
| 137 |
+
import tensorflow as tf
|
| 138 |
+
|
| 139 |
def predict_image(img):
|
| 140 |
img = np.array(img)
|
| 141 |
img_resized = tf.image.resize(img, (180, 180))
|
|
|
|
| 143 |
prediction = model.predict(img_4d)[0]
|
| 144 |
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
|
| 145 |
|
| 146 |
+
|
| 147 |
+
image = gr.Image()
|
| 148 |
label = gr.Label(num_top_classes=5)
|
| 149 |
|
| 150 |
+
# Define custom CSS for background image
|
| 151 |
+
custom_css = """
|
| 152 |
+
body {
|
| 153 |
+
background-image: url('\extracted_files\Pest_Dataset\bees\bees (444).jpg');
|
| 154 |
+
background-size: cover;
|
| 155 |
+
background-repeat: no-repeat;
|
| 156 |
+
background-attachment: fixed;
|
| 157 |
+
color: white;
|
| 158 |
+
}
|
| 159 |
+
"""
|
| 160 |
+
|
| 161 |
gr.Interface(
|
| 162 |
+
fn=predict_image,
|
| 163 |
+
inputs=image,
|
| 164 |
+
outputs=label,
|
| 165 |
title="Pest Classification",
|
| 166 |
+
description="Upload an image of a pest to classify it into one of the predefined categories.",
|
| 167 |
+
css=custom_css
|
| 168 |
).launch(debug=True)
|