# Import Data Science Libraries import gradio as gr import os import gdown import zipfile import pandas as pd from pathlib import Path from PIL import Image, UnidentifiedImageError import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split import itertools import random # Import visualization libraries import matplotlib.pyplot as plt import matplotlib.cm as cm import cv2 import seaborn as sns # Tensorflow Libraries from tensorflow import keras from tensorflow.keras import layers, models from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.layers import Dense, Dropout, Flatten, BatchNormalization from tensorflow.keras.callbacks import Callback, EarlyStopping, ModelCheckpoint from tensorflow.keras.optimizers import Adam from tensorflow.keras.applications import MobileNetV2 from tensorflow.keras import Model from tensorflow.keras.layers import Rescaling, RandomFlip, RandomRotation, RandomZoom, RandomContrast, Resizing # System libraries from pathlib import Path import os.path # Metrics from sklearn.metrics import classification_report, confusion_matrix sns.set(style='darkgrid') # Seed Everything to reproduce results for future use cases def seed_everything(seed=42): # Seed value for TensorFlow tf.random.set_seed(seed) # Seed value for NumPy np.random.seed(seed) # Seed value for Python's random library random.seed(seed) # Force TensorFlow to use single thread # Multiple threads are a potential source of non-reproducible results. session_conf = tf.compat.v1.ConfigProto( intra_op_parallelism_threads=1, inter_op_parallelism_threads=1 ) def seed_everything(seed=42) # Seed value for Python's random library random.seed(seed) # Seed value for NumPy np.random.seed(seed) # Seed value for TensorFlow tf.random.set_seed(seed) # Ensure deterministic behavior os.environ['PYTHONHASHSEED'] = str(seed) os.environ['TF_DETERMINISTIC_OPS'] = '1' os.environ['TF_CUDNN_DETERMINISTIC'] = '1' # Set session configuration to ensure single-threaded execution session_conf = tf.compat.v1.ConfigProto( intra_op_parallelism_threads=1, inter_op_parallelism_threads=1 ) sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf) tf.compat.v1.keras.backend.set_session(sess) seed_everything() import requests # URL of the file url = "https://raw.githubusercontent.com/mrdbourke/tensorflow-deep-learning/main/extras/helper_functions.py" # Send a GET request to the URL response = requests.get(url) # Check if the request was successful if response.status_code == 200: # Save the content to a file with open("helper_functions.py", "wb") as f: f.write(response.content) print("File downloaded successfully.") else: print("Failed to download the file.") # Import series of helper functions for our notebook from helper_functions import create_tensorboard_callback, plot_loss_curves, unzip_data, compare_historys, walk_through_dir, pred_and_plot BATCH_SIZE = 32 TARGET_SIZE = (224, 224) # Define the Google Drive shareable link gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link' # Extract the file ID from the URL file_id = gdrive_url.split('/d/')[1].split('/view')[0] direct_download_url = f'https://drive.google.com/uc?id={file_id}' # Define the local filename to save the ZIP file local_zip_file = 'file.zip' # Download the ZIP file gdown.download(direct_download_url, local_zip_file, quiet=False) # Directory to extract files extracted_path = 'extracted_files' # Verify if the downloaded file is a ZIP file and extract it try: with zipfile.ZipFile(local_zip_file, 'r') as zip_ref: zip_ref.extractall(extracted_path) print("Extraction successful!") except zipfile.BadZipFile: print("Error: The downloaded file is not a valid ZIP file.") # Optionally, you can delete the ZIP file after extraction os.remove(local_zip_file) # Convert the extracted directory path to a pathlib.Path object data_dir = Path(extracted_path) # Print the directory structure to debug for root, dirs, files in os.walk(extracted_path): level = root.replace(extracted_path, '').count(os.sep) indent = ' ' * 4 * (level) print(f"{indent}{os.path.basename(root)}/") subindent = ' ' * 4 * (level + 1) for f in files: print(f"{subindent}{f}") # Function to convert the directory path to a DataFrame def convert_path_to_df(dataset): image_dir = Path(dataset) # Get filepaths and labels filepaths = list(image_dir.glob(r'**/*.JPG')) + list(image_dir.glob(r'**/*.jpg')) + list(image_dir.glob(r'**/*.png')) + list(image_dir.glob(r'**/*.PNG')) labels = list(map(lambda x: os.path.split(os.path.split(x)[0])[1], filepaths)) filepaths = pd.Series(filepaths, name='Filepath').astype(str) labels = pd.Series(labels, name='Label') # Concatenate filepaths and labels image_df = pd.concat([filepaths, labels], axis=1) return image_df # Path to the dataset directory data_dir = Path('extracted_files/Pest_Dataset') image_df = convert_path_to_df(data_dir) # Check for corrupted images within the dataset for img_p in data_dir.rglob("*.jpg"): try: img = Image.open(img_p) except UnidentifiedImageError: print(f"Corrupted image file: {img_p}") # You can save the DataFrame to a CSV for further use image_df.to_csv('image_dataset.csv', index=False) print("DataFrame created and saved successfully!") label_counts = image_df['Label'].value_counts() plt.figure(figsize=(10, 6)) sns.barplot(x=label_counts.index, y=label_counts.values, alpha=0.8, palette='rocket') plt.title('Distribution of Labels in Image Dataset', fontsize=16) plt.xlabel('Label', fontsize=14) plt.ylabel('Count', fontsize=14) plt.xticks(rotation=45) plt.show() # Display 16 picture of the dataset with their labels random_index = np.random.randint(0, len(image_df), 16) fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10), subplot_kw={'xticks': [], 'yticks': []}) for i, ax in enumerate(axes.flat): ax.imshow(plt.imread(image_df.Filepath[random_index[i]])) ax.set_title(image_df.Label[random_index[i]]) plt.tight_layout() plt.show() # Function to return a random image path from a given directory def random_sample(directory): images = [os.path.join(directory, img) for img in os.listdir(directory) if img.endswith(('.jpg', '.jpeg', '.png'))] return random.choice(images) # Function to compute the Error Level Analysis (ELA) of an image def compute_ela_cv(path, quality): temp_filename = 'temp.jpg' orig = cv2.imread(path) cv2.imwrite(temp_filename, orig, [int(cv2.IMWRITE_JPEG_QUALITY), quality]) compressed = cv2.imread(temp_filename) ela_image = cv2.absdiff(orig, compressed) ela_image = np.clip(ela_image * 10, 0, 255).astype(np.uint8) return ela_image # View random sample from the dataset p = random_sample('extracted_files/Pest_Dataset/beetle') orig = cv2.imread(p) orig = cv2.cvtColor(orig, cv2.COLOR_BGR2RGB) / 255.0 init_val = 100 columns = 3 rows = 3 fig=plt.figure(figsize=(15, 10)) for i in range(1, columns*rows +1): quality=init_val - (i-1) * 8 img = compute_ela_cv(path=p, quality=quality) if i == 1: img = orig.copy() ax = fig.add_subplot(rows, columns, i) ax.title.set_text(f'q: {quality}') plt.imshow(img) plt.show() # Separate in train and test data train_df, test_df = train_test_split(image_df, test_size=0.2, shuffle=True, random_state=42) train_generator = ImageDataGenerator( preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input, validation_split=0.2 ) test_generator = ImageDataGenerator( preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input ) # Split the data into three categories. train_images = train_generator.flow_from_dataframe( dataframe=train_df, x_col='Filepath', y_col='Label', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=32, shuffle=True, seed=42, subset='training' ) val_images = train_generator.flow_from_dataframe( dataframe=train_df, x_col='Filepath', y_col='Label', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=32, shuffle=True, seed=42, subset='validation' ) test_images = test_generator.flow_from_dataframe( dataframe=test_df, x_col='Filepath', y_col='Label', target_size=(224, 224), color_mode='rgb', class_mode='categorical', batch_size=32, shuffle=False ) # Data Augmentation Step augment = tf.keras.Sequential([ layers.experimental.preprocessing.Resizing(224,224), layers.experimental.preprocessing.Rescaling(1./255), layers.experimental.preprocessing.RandomFlip("horizontal"), layers.experimental.preprocessing.RandomRotation(0.1), layers.experimental.preprocessing.RandomZoom(0.1), layers.experimental.preprocessing.RandomContrast(0.1), ]) # Load the pretained model pretrained_model = tf.keras.applications.efficientnet_v2.EfficientNetV2L( input_shape=(224, 224, 3), include_top=False, weights='imagenet', pooling='max' ) pretrained_model.trainable = False # Create checkpoint callback checkpoint_path = "pests_cats_classification_model_checkpoint" checkpoint_callback = ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor="val_accuracy", save_best_only=True) # Setup EarlyStopping callback to stop training if model's val_loss doesn't improve for 3 epochs early_stopping = EarlyStopping(monitor = "val_loss", # watch the val loss metric patience = 5, restore_best_weights = True) # if val loss decreases for 3 epochs in a row, stop training inputs = pretrained_model.input x = augment(inputs) # x = Dense(128, activation='relu')(pretrained_model.output) # x = Dropout(0.45)(x) # x = Dense(256, activation='relu')(x) # x = Dropout(0.45)(x) # Add new classification layers x = Flatten()(pretrained_model.output) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = BatchNormalization()(x) x = Dense(128, activation='relu')(x) x = Dropout(0.5)(x) outputs = Dense(12, activation='softmax')(x) model = Model(inputs=inputs, outputs=outputs) model.compile( optimizer=Adam(0.00001), loss='categorical_crossentropy', metrics=['accuracy'] ) history = model.fit( train_images, steps_per_epoch=len(train_images), validation_data=val_images, validation_steps=len(val_images), epochs=50, callbacks=[ early_stopping, create_tensorboard_callback("training_logs", "pests_cats_classification"), checkpoint_callback, ] ) results = model.evaluate(test_images, verbose=0) print(" Test Loss: {:.5f}".format(results[0])) print("Test Accuracy: {:.2f}%".format(results[1] * 100)) accuracy = history.history['accuracy'] val_accuracy = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(accuracy)) plt.plot(epochs, accuracy, 'b', label='Training accuracy') plt.plot(epochs, val_accuracy, 'r', label='Validation accuracy') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'b', label='Training loss') plt.plot(epochs, val_loss, 'r', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() # Predict the label of the test_images pred = model.predict(test_images) pred = np.argmax(pred,axis=1) # Map the label labels = (train_images.class_indices) labels = dict((v,k) for k,v in labels.items()) pred = [labels[k] for k in pred] # Display the result print(f'The first 5 predictions: {pred[:5]}') # Display 25 random pictures from the dataset with their labels random_index = np.random.randint(0, len(test_df) - 1, 15) fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(25, 15), subplot_kw={'xticks': [], 'yticks': []}) for i, ax in enumerate(axes.flat): ax.imshow(plt.imread(test_df.Filepath.iloc[random_index[i]])) if test_df.Label.iloc[random_index[i]] == pred[random_index[i]]: color = "green" else: color = "red" ax.set_title(f"True: {test_df.Label.iloc[random_index[i]]}\nPredicted: {pred[random_index[i]]}", color=color) plt.show() plt.tight_layout() y_test = list(test_df.Label) print(classification_report(y_test, pred)) report = classification_report(y_test, pred, output_dict=True) df = pd.DataFrame(report).transpose() df from sklearn.metrics import confusion_matrix # Assuming y_test contains the true labels and pred contains the predicted labels cm = confusion_matrix(y_test, pred) print(cm) import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.applications.efficientnet_v2 import preprocess_input from tensorflow.keras.preprocessing import image import tensorflow as tf import cv2 def get_img_array(img_path, size): # Load image and convert to array img = image.load_img(img_path, target_size=size) array = image.img_to_array(img) array = np.expand_dims(array, axis=0) return array def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None): # Create a model that maps the input image to the activations of the last conv layer grad_model = tf.keras.models.Model( [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output] ) # Compute the gradient of the top predicted class for the input image with tf.GradientTape() as tape: last_conv_layer_output, preds = grad_model(img_array) if pred_index is None: pred_index = tf.argmax(preds[0]) class_channel = preds[:, pred_index] # Gradient of the predicted class with respect to the output feature map of the last conv layer grads = tape.gradient(class_channel, last_conv_layer_output) # Vector where each entry is the mean intensity of the gradient over a specific feature map channel pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) # Multiply each channel in the feature map array by the "importance" of the channel last_conv_layer_output = last_conv_layer_output[0] heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis] heatmap = tf.squeeze(heatmap) # For visualization purpose, normalize the heatmap between 0 & 1 heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap) return heatmap.numpy() def save_and_display_gradcam(img_path, heatmap, alpha=0.4): # Load the original image img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Rescale heatmap to a range 0-255 heatmap = np.uint8(255 * heatmap) # Use jet colormap to colorize the heatmap jet = cm.get_cmap("jet") # Use RGB values of the colormap jet_colors = jet(np.arange(256))[:, :3] jet_heatmap = jet_colors[heatmap] # Create an image with RGB colorized heatmap jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap) jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0])) jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap) # Superimpose the heatmap on the original image superimposed_img = jet_heatmap * alpha + img superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img) # Save the superimposed image cam_path = "cam.jpg" superimposed_img.save(cam_path) return cam_path import matplotlib.cm as cm import pandas as pd # Assuming you have test_df, model, and other variables defined random_index = np.random.randint(0, len(test_df), 15) img_size = (224, 224) last_conv_layer_name = 'top_conv' fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(15, 10), subplot_kw={'xticks': [], 'yticks': []}) for i, ax in enumerate(axes.flat): img_path = test_df.Filepath.iloc[random_index[i]] img_array = preprocess_input(get_img_array(img_path, size=img_size)) heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name) cam_path = save_and_display_gradcam(img_path, heatmap) ax.imshow(plt.imread(cam_path)) ax.set_title(f"True: {test_df.Label.iloc[random_index[i]]}\nPredicted: {pred[random_index[i]]}") plt.tight_layout() plt.show() class_names = train_images.class_indices class_names = {v: k for k, v in class_names.items()} # Gradio Interface for Prediction def predict_image(img): img = np.array(img) img_resized = tf.image.resize(img, (TARGET_SIZE[0], TARGET_SIZE[1])) img_4d = tf.expand_dims(img_resized, axis=0) prediction = model.predict(img_4d)[0] return {class_names[i]: float(prediction[i]) for i in range(len(class_names))} # Launch Gradio interface image = gr.Image() label = gr.Label(num_top_classes=1) gr.Interface( fn=predict_image, inputs=image, outputs=label, title="Welcome to Agricultural Pest Image Classification", description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils", ).launch(debug=True)