NORLIE JHON MALAGDAO
Update app.py
19ffaa2 verified
raw
history blame
17.1 kB
# Import Data Science Libraries
import gradio as gr
import os
import gdown
import zipfile
import pandas as pd
from pathlib import Path
from PIL import Image, UnidentifiedImageError
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
import itertools
import random
# Import visualization libraries
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import cv2
import seaborn as sns
# Tensorflow Libraries
from tensorflow import keras
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Dense, Dropout, Flatten, BatchNormalization
from tensorflow.keras.callbacks import Callback, EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras import Model
from tensorflow.keras.layers import Rescaling, RandomFlip, RandomRotation, RandomZoom, RandomContrast, Resizing
# System libraries
from pathlib import Path
import os.path
# Metrics
from sklearn.metrics import classification_report, confusion_matrix
sns.set(style='darkgrid')
# Seed Everything to reproduce results for future use cases
def seed_everything(seed=42):
# Seed value for TensorFlow
tf.random.set_seed(seed)
# Seed value for NumPy
np.random.seed(seed)
# Seed value for Python's random library
random.seed(seed)
# Force TensorFlow to use single thread
# Multiple threads are a potential source of non-reproducible results.
session_conf = tf.compat.v1.ConfigProto(
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1
)
# Make sure that TensorFlow uses a deterministic operation wherever possible
tf.compat.v1.set_random_seed(seed)
sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
tf.compat.v1.keras.backend.set_session(sess)
seed_everything()
import requests
# URL of the file
url = "https://raw.githubusercontent.com/mrdbourke/tensorflow-deep-learning/main/extras/helper_functions.py"
# Send a GET request to the URL
response = requests.get(url)
# Check if the request was successful
if response.status_code == 200:
# Save the content to a file
with open("helper_functions.py", "wb") as f:
f.write(response.content)
print("File downloaded successfully.")
else:
print("Failed to download the file.")
# Import series of helper functions for our notebook
from helper_functions import create_tensorboard_callback, plot_loss_curves, unzip_data, compare_historys, walk_through_dir, pred_and_plot
BATCH_SIZE = 32
TARGET_SIZE = (224, 224)
# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'
# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)
# Directory to extract files
extracted_path = 'extracted_files'
# Verify if the downloaded file is a ZIP file and extract it
try:
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
zip_ref.extractall(extracted_path)
print("Extraction successful!")
except zipfile.BadZipFile:
print("Error: The downloaded file is not a valid ZIP file.")
# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)
# Convert the extracted directory path to a pathlib.Path object
data_dir = Path(extracted_path)
# Print the directory structure to debug
for root, dirs, files in os.walk(extracted_path):
level = root.replace(extracted_path, '').count(os.sep)
indent = ' ' * 4 * (level)
print(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
print(f"{subindent}{f}")
# Function to convert the directory path to a DataFrame
def convert_path_to_df(dataset):
image_dir = Path(dataset)
# Get filepaths and labels
filepaths = list(image_dir.glob(r'**/*.JPG')) + list(image_dir.glob(r'**/*.jpg')) + list(image_dir.glob(r'**/*.png')) + list(image_dir.glob(r'**/*.PNG'))
labels = list(map(lambda x: os.path.split(os.path.split(x)[0])[1], filepaths))
filepaths = pd.Series(filepaths, name='Filepath').astype(str)
labels = pd.Series(labels, name='Label')
# Concatenate filepaths and labels
image_df = pd.concat([filepaths, labels], axis=1)
return image_df
# Path to the dataset directory
data_dir = Path('extracted_files/Pest_Dataset')
image_df = convert_path_to_df(data_dir)
# Check for corrupted images within the dataset
for img_p in data_dir.rglob("*.jpg"):
try:
img = Image.open(img_p)
except UnidentifiedImageError:
print(f"Corrupted image file: {img_p}")
# You can save the DataFrame to a CSV for further use
image_df.to_csv('image_dataset.csv', index=False)
print("DataFrame created and saved successfully!")
label_counts = image_df['Label'].value_counts()
plt.figure(figsize=(10, 6))
sns.barplot(x=label_counts.index, y=label_counts.values, alpha=0.8, palette='rocket')
plt.title('Distribution of Labels in Image Dataset', fontsize=16)
plt.xlabel('Label', fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.xticks(rotation=45)
plt.show()
# Display 16 picture of the dataset with their labels
random_index = np.random.randint(0, len(image_df), 16)
fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10),
subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
ax.imshow(plt.imread(image_df.Filepath[random_index[i]]))
ax.set_title(image_df.Label[random_index[i]])
plt.tight_layout()
plt.show()
# Function to return a random image path from a given directory
def random_sample(directory):
images = [os.path.join(directory, img) for img in os.listdir(directory) if img.endswith(('.jpg', '.jpeg', '.png'))]
return random.choice(images)
# Function to compute the Error Level Analysis (ELA) of an image
def compute_ela_cv(path, quality):
temp_filename = 'temp.jpg'
orig = cv2.imread(path)
cv2.imwrite(temp_filename, orig, [int(cv2.IMWRITE_JPEG_QUALITY), quality])
compressed = cv2.imread(temp_filename)
ela_image = cv2.absdiff(orig, compressed)
ela_image = np.clip(ela_image * 10, 0, 255).astype(np.uint8)
return ela_image
# View random sample from the dataset
p = random_sample('extracted_files/Pest_Dataset/beetle')
orig = cv2.imread(p)
orig = cv2.cvtColor(orig, cv2.COLOR_BGR2RGB) / 255.0
init_val = 100
columns = 3
rows = 3
fig=plt.figure(figsize=(15, 10))
for i in range(1, columns*rows +1):
quality=init_val - (i-1) * 8
img = compute_ela_cv(path=p, quality=quality)
if i == 1:
img = orig.copy()
ax = fig.add_subplot(rows, columns, i)
ax.title.set_text(f'q: {quality}')
plt.imshow(img)
plt.show()
# Separate in train and test data
train_df, test_df = train_test_split(image_df, test_size=0.2, shuffle=True, random_state=42)
train_generator = ImageDataGenerator(
preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input,
validation_split=0.2
)
test_generator = ImageDataGenerator(
preprocessing_function=tf.keras.applications.efficientnet_v2.preprocess_input
)
# Split the data into three categories.
train_images = train_generator.flow_from_dataframe(
dataframe=train_df,
x_col='Filepath',
y_col='Label',
target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=True,
seed=42,
subset='training'
)
val_images = train_generator.flow_from_dataframe(
dataframe=train_df,
x_col='Filepath',
y_col='Label',
target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=True,
seed=42,
subset='validation'
)
test_images = test_generator.flow_from_dataframe(
dataframe=test_df,
x_col='Filepath',
y_col='Label',
target_size=(224, 224),
color_mode='rgb',
class_mode='categorical',
batch_size=32,
shuffle=False
)
# Data Augmentation Step
augment = tf.keras.Sequential([
layers.experimental.preprocessing.Resizing(224,224),
layers.experimental.preprocessing.Rescaling(1./255),
layers.experimental.preprocessing.RandomFlip("horizontal"),
layers.experimental.preprocessing.RandomRotation(0.1),
layers.experimental.preprocessing.RandomZoom(0.1),
layers.experimental.preprocessing.RandomContrast(0.1),
])
# Load the pretained model
pretrained_model = tf.keras.applications.efficientnet_v2.EfficientNetV2L(
input_shape=(224, 224, 3),
include_top=False,
weights='imagenet',
pooling='max'
)
pretrained_model.trainable = False
# Create checkpoint callback
checkpoint_path = "pests_cats_classification_model_checkpoint"
checkpoint_callback = ModelCheckpoint(checkpoint_path,
save_weights_only=True,
monitor="val_accuracy",
save_best_only=True)
# Setup EarlyStopping callback to stop training if model's val_loss doesn't improve for 3 epochs
early_stopping = EarlyStopping(monitor = "val_loss", # watch the val loss metric
patience = 5,
restore_best_weights = True) # if val loss decreases for 3 epochs in a row, stop training
inputs = pretrained_model.input
x = augment(inputs)
# x = Dense(128, activation='relu')(pretrained_model.output)
# x = Dropout(0.45)(x)
# x = Dense(256, activation='relu')(x)
# x = Dropout(0.45)(x)
# Add new classification layers
x = Flatten()(pretrained_model.output)
x = Dense(256, activation='relu')(x)
x = Dropout(0.5)(x)
x = BatchNormalization()(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
outputs = Dense(12, activation='softmax')(x)
model = Model(inputs=inputs, outputs=outputs)
model.compile(
optimizer=Adam(0.00001),
loss='categorical_crossentropy',
metrics=['accuracy']
)
history = model.fit(
train_images,
steps_per_epoch=len(train_images),
validation_data=val_images,
validation_steps=len(val_images),
epochs=50,
callbacks=[
early_stopping,
create_tensorboard_callback("training_logs",
"pests_cats_classification"),
checkpoint_callback,
]
)
results = model.evaluate(test_images, verbose=0)
print(" Test Loss: {:.5f}".format(results[0]))
print("Test Accuracy: {:.2f}%".format(results[1] * 100))
accuracy = history.history['accuracy']
val_accuracy = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(accuracy))
plt.plot(epochs, accuracy, 'b', label='Training accuracy')
plt.plot(epochs, val_accuracy, 'r', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
# Predict the label of the test_images
pred = model.predict(test_images)
pred = np.argmax(pred,axis=1)
# Map the label
labels = (train_images.class_indices)
labels = dict((v,k) for k,v in labels.items())
pred = [labels[k] for k in pred]
# Display the result
print(f'The first 5 predictions: {pred[:5]}')
# Display 25 random pictures from the dataset with their labels
random_index = np.random.randint(0, len(test_df) - 1, 15)
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(25, 15),
subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
ax.imshow(plt.imread(test_df.Filepath.iloc[random_index[i]]))
if test_df.Label.iloc[random_index[i]] == pred[random_index[i]]:
color = "green"
else:
color = "red"
ax.set_title(f"True: {test_df.Label.iloc[random_index[i]]}\nPredicted: {pred[random_index[i]]}", color=color)
plt.show()
plt.tight_layout()
y_test = list(test_df.Label)
print(classification_report(y_test, pred))
report = classification_report(y_test, pred, output_dict=True)
df = pd.DataFrame(report).transpose()
df
from sklearn.metrics import confusion_matrix
# Assuming y_test contains the true labels and pred contains the predicted labels
cm = confusion_matrix(y_test, pred)
print(cm)
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input
from tensorflow.keras.preprocessing import image
import tensorflow as tf
import cv2
def get_img_array(img_path, size):
# Load image and convert to array
img = image.load_img(img_path, target_size=size)
array = image.img_to_array(img)
array = np.expand_dims(array, axis=0)
return array
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
# Create a model that maps the input image to the activations of the last conv layer
grad_model = tf.keras.models.Model(
[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
)
# Compute the gradient of the top predicted class for the input image
with tf.GradientTape() as tape:
last_conv_layer_output, preds = grad_model(img_array)
if pred_index is None:
pred_index = tf.argmax(preds[0])
class_channel = preds[:, pred_index]
# Gradient of the predicted class with respect to the output feature map of the last conv layer
grads = tape.gradient(class_channel, last_conv_layer_output)
# Vector where each entry is the mean intensity of the gradient over a specific feature map channel
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
# Multiply each channel in the feature map array by the "importance" of the channel
last_conv_layer_output = last_conv_layer_output[0]
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
# For visualization purpose, normalize the heatmap between 0 & 1
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap.numpy()
def save_and_display_gradcam(img_path, heatmap, alpha=0.4):
# Load the original image
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Rescale heatmap to a range 0-255
heatmap = np.uint8(255 * heatmap)
# Use jet colormap to colorize the heatmap
jet = cm.get_cmap("jet")
# Use RGB values of the colormap
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
# Create an image with RGB colorized heatmap
jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap)
# Superimpose the heatmap on the original image
superimposed_img = jet_heatmap * alpha + img
superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img)
# Save the superimposed image
cam_path = "cam.jpg"
superimposed_img.save(cam_path)
return cam_path
import matplotlib.cm as cm
import pandas as pd
# Assuming you have test_df, model, and other variables defined
random_index = np.random.randint(0, len(test_df), 15)
img_size = (224, 224)
last_conv_layer_name = 'top_conv'
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(15, 10),
subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
img_path = test_df.Filepath.iloc[random_index[i]]
img_array = preprocess_input(get_img_array(img_path, size=img_size))
heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name)
cam_path = save_and_display_gradcam(img_path, heatmap)
ax.imshow(plt.imread(cam_path))
ax.set_title(f"True: {test_df.Label.iloc[random_index[i]]}\nPredicted: {pred[random_index[i]]}")
plt.tight_layout()
plt.show()
class_names = train_images.class_indices
class_names = {v: k for k, v in class_names.items()}
# Gradio Interface for Prediction
def predict_image(img):
img = np.array(img)
img_resized = tf.image.resize(img, (TARGET_SIZE[0], TARGET_SIZE[1]))
img_4d = tf.expand_dims(img_resized, axis=0)
prediction = model.predict(img_4d)[0]
return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
# Launch Gradio interface
image = gr.Image()
label = gr.Label(num_top_classes=1)
gr.Interface(
fn=predict_image,
inputs=image,
outputs=label,
title="Welcome to Agricultural Pest Image Classification",
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
).launch(debug=True)