Spaces:
Running
Running
File size: 15,655 Bytes
873b3ee f49e77c 0005eeb f49e77c ce7a23a d209c12 ce7a23a d209c12 ce7a23a 873b3ee f49e77c 873b3ee ce7a23a 873b3ee d209c12 873b3ee d209c12 873b3ee f49e77c 873b3ee d209c12 873b3ee d209c12 873b3ee d209c12 873b3ee ce7a23a 873b3ee ce7a23a d209c12 873b3ee d209c12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import pandas as pd
import plotly.graph_objs as go
from plotly.subplots import make_subplots
import streamlit as st
def is_matching_pattern(column, prefix):
"""
Checks if the column name matches the pattern: prefix-number (1 to 3 digits).
Parameters:
- column: The column name to check.
- prefix: The prefix to match.
Returns:
- True if matches, False otherwise.
"""
if not column.startswith(prefix + '_'):
return False
suffix = column[len(prefix) + 1:]
if 1 <= len(suffix) <= 3 and suffix.isdigit():
return True
return False
def analyze_single_column(df, column_name, type_option):
"""
Function 1: Analyzes data based on the selected type.
Parameters:
- df: pandas DataFrame
- column_name: Name of the column or prefix
- type_option: 1 or 2
Returns:
- table: DataFrame containing frequency percentages
- fig: Plotly Figure object
"""
total_rows = len(df)
if type_option == 1:
if column_name not in df.columns:
st.error(f"Column '{column_name}' not found in the Excel file.")
return None, None
# Calculate frequency
frequency = df[column_name].value_counts(dropna=False).sort_index()
percentage = (frequency / total_rows) * 100
table = percentage.reset_index()
table.columns = [column_name, 'Percentage']
st.subheader("Frequency Table (Percentage):")
st.dataframe(table)
# Plot interactive histogram
fig = go.Figure(data=[go.Bar(
x=table[column_name].astype(str),
y=table['Percentage'],
marker=dict(color='rgba(173, 216, 230, 0.6)',
line=dict(color='rgba(173, 216, 230, 1.0)', width=1)),
width=0.4
)])
fig.update_layout(
title=f"Histogram of '{column_name}'",
xaxis_title=column_name,
yaxis_title='Percentage',
bargap=0.2,
template='plotly_white'
)
st.plotly_chart(fig, use_container_width=True)
return table, fig
elif type_option == 2:
# Column name pattern: name-number (1 to 3 digits)
selected_columns = [col for col in df.columns if is_matching_pattern(col, column_name)]
if not selected_columns:
st.error(f"No columns matching the pattern '{column_name}-<number>' found in the Excel file.")
return None, None
results = {}
for col in selected_columns:
unique_values = df[col].dropna().unique()
if len(unique_values) > 2:
st.warning(f"Column '{col}' has more than two unique values. It was skipped.")
continue
value_counts = df[col].value_counts(dropna=False)
percentage = (value_counts / total_rows) * 100
for val, pct in percentage.items():
results[val] = results.get(val, 0) + pct
if not results:
st.error("No valid columns with exactly two unique values were found.")
return None, None
# Sort the keys
table = pd.DataFrame(list(results.items()), columns=[column_name, 'Percentage'])
table = table.sort_values(by=column_name).reset_index(drop=True)
st.subheader("Aggregated Frequency Table (Percentage):")
st.dataframe(table)
# Plot interactive histogram
fig = go.Figure(data=[go.Bar(
x=table[column_name].astype(str),
y=table['Percentage'],
marker=dict(color='rgba(173, 216, 230, 0.6)',
line=dict(color='rgba(173, 216, 230, 1.0)', width=1)),
width=0.4
)])
fig.update_layout(
title=f"Histogram of Columns '{column_name}-<number>'",
xaxis_title=column_name,
yaxis_title='Percentage',
bargap=0.2,
template='plotly_white'
)
st.plotly_chart(fig, use_container_width=True)
return table, fig
else:
st.error("The 'type_option' must be either 1 or 2.")
return None, None
def analyze_multiple_columns(df, first_name, second_name, first_type, second_type):
"""
Function 2: Analyzes data based on combinations of first and second types.
Parameters:
- df: pandas DataFrame
- first_name: Name or prefix of the first column
- second_name: Name or prefix of the second column
- first_type: 1 or 2
- second_type: 1 or 2
Returns:
- table: DataFrame containing contingency or frequency tables
- figs: List of Plotly Figure objects
"""
total_rows = len(df)
# Helper functions to select columns based on type
def select_columns_type1(name):
if name in df.columns:
return [name]
else:
st.error(f"Column '{name}' not found in the Excel file.")
return []
def select_columns_type2(name):
selected = [col for col in df.columns if is_matching_pattern(col, name)]
if not selected:
st.error(f"No columns matching the pattern '{name}-<number>' found in the Excel file.")
return selected
# Select columns based on types
first_columns = select_columns_type1(first_name) if first_type == 1 else select_columns_type2(first_name)
second_columns = select_columns_type1(second_name) if second_type == 1 else select_columns_type2(second_name)
if not first_columns or not second_columns:
st.error("Column selection failed.")
return None, None
figs = []
if first_type == 1 and second_type == 1:
# Both types are 1
if len(first_columns) != 1 or len(second_columns) != 1:
st.error("When both first and second types are 1, exactly one column must be selected for each.")
return None, None
col1 = first_columns[0]
col2 = second_columns[0]
contingency = pd.crosstab(df[col1], df[col2], normalize='all') * 100
st.subheader("Contingency Table (Percentage):")
st.dataframe(contingency)
# Plot interactive heatmap
fig = go.Figure(data=go.Heatmap(
z=contingency.values,
x=contingency.columns,
y=contingency.index,
colorscale='Blues'
))
fig.update_layout(
title=f"Contingency Table between '{col1}' and '{col2}'",
xaxis_title=col2,
yaxis_title=col1,
template='plotly_white'
)
st.plotly_chart(fig, use_container_width=True)
figs.append(fig)
elif first_type == 1 and second_type == 2:
# First type is 1 and second type is 2
if len(first_columns) != 1:
st.error("When first type is 1, exactly one column must be selected.")
return None, None
col1 = first_columns[0]
col2_list = second_columns
unique_values_col1 = df[col1].dropna().unique()
results = {}
for val in unique_values_col1:
filter_df = df[df[col1] == val]
freq_table = {}
for col2 in col2_list:
frequency = filter_df[col2].value_counts(dropna=False)
percentage = (frequency / total_rows) * 100
freq_table[col2] = percentage.to_dict()
results[val] = freq_table
# Convert results to a multi-dimensional DataFrame
final_df = pd.DataFrame(results).T
st.subheader("Multi-dimensional Frequency Table (Percentage):")
st.dataframe(final_df)
# Plot interactive charts
for val, data in results.items():
st.subheader(f"Frequencies for '{col1}' = {val}")
fig = make_subplots(rows=1, cols=len(col2_list), subplot_titles=col2_list)
for i, col2 in enumerate(col2_list, 1):
categories = list(data[col2].keys())
values = list(data[col2].values())
fig.add_trace(go.Bar(
x=categories,
y=values,
marker=dict(color='rgba(173, 216, 230, 0.6)',
line=dict(color='rgba(173, 216, 230, 1.0)', width=1)),
width=0.4
), row=1, col=i)
fig.update_xaxes(title_text=col2, row=1, col=i)
fig.update_yaxes(title_text='Percentage', row=1, col=i)
fig.update_layout(
title=f"Frequencies for '{col1}' = {val}",
template='plotly_white',
showlegend=False
)
st.plotly_chart(fig, use_container_width=True)
figs.append(fig)
elif first_type == 2 and second_type == 1:
# First type is 2 and second type is 1
if len(second_columns) != 1:
st.error("When second type is 1, exactly one column must be selected.")
return None, None
col2 = second_columns[0]
col1_list = first_columns
unique_values_col2 = df[col2].dropna().unique()
results = {}
for val in unique_values_col2:
filter_df = df[df[col2] == val]
freq_table = {}
for col1 in col1_list:
frequency = filter_df[col1].value_counts(dropna=False)
percentage = (frequency / total_rows) * 100
freq_table[col1] = percentage.to_dict()
results[val] = freq_table
# Convert results to a multi-dimensional DataFrame
final_df = pd.DataFrame(results).T
st.subheader("Multi-dimensional Frequency Table (Percentage):")
st.dataframe(final_df)
# Plot interactive charts
for val, data in results.items():
st.subheader(f"Frequencies for '{col2}' = {val}")
fig = make_subplots(rows=1, cols=len(col1_list), subplot_titles=col1_list)
for i, col1 in enumerate(col1_list, 1):
categories = list(data[col1].keys())
values = list(data[col1].values())
fig.add_trace(go.Bar(
x=categories,
y=values,
marker=dict(color='rgba(173, 216, 230, 0.6)',
line=dict(color='rgba(173, 216, 230, 1.0)', width=1)),
width=0.4
), row=1, col=i)
fig.update_xaxes(title_text=col1, row=1, col=i)
fig.update_yaxes(title_text='Percentage', row=1, col=i)
fig.update_layout(
title=f"Frequencies for '{col2}' = {val}",
template='plotly_white',
showlegend=False
)
st.plotly_chart(fig, use_container_width=True)
figs.append(fig)
elif first_type == 2 and second_type == 2:
# Both types are 2
col1_list = first_columns
col2_list = second_columns
results = {}
for col2 in col2_list:
for val in df[col2].dropna().unique():
filter_df = df[df[col2] == val]
frequency = {}
for col1 in col1_list:
count = filter_df[col1].count()
frequency[col1] = (count / total_rows) * 100
results[(col2, val)] = frequency
if not results:
st.error("No valid combinations found for both types being 2.")
return None, None
# Convert results to a multi-dimensional DataFrame
index = pd.MultiIndex.from_tuples(results.keys(), names=['Second Column', 'Second Column Value'])
final_df = pd.DataFrame(list(results.values()), index=index)
st.subheader("Multi-dimensional Frequency Table (Percentage):")
st.dataframe(final_df)
# Plot interactive charts
for (col2, val), data in results.items():
st.subheader(f"Frequencies for '{col2}' = {val}")
fig = go.Figure(data=[go.Bar(
x=list(data.keys()),
y=list(data.values()),
marker=dict(color='rgba(173, 216, 230, 0.6)',
line=dict(color='rgba(173, 216, 230, 1.0)', width=1)),
width=0.4
)])
fig.update_layout(
title=f"Frequencies for '{col2}' = {val}",
xaxis_title=first_name,
yaxis_title='Percentage',
template='plotly_white'
)
st.plotly_chart(fig, use_container_width=True)
figs.append(fig)
else:
st.error("The 'first_type' and 'second_type' must each be either 1 or 2.")
return None, None
return final_df if 'final_df' in locals() else table, figs
def main():
st.title("📊 Data Analysis Application")
st.write("""
This application allows you to upload an Excel file and perform data analysis based on your selected parameters.
""")
# File uploader
uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx", "xls"])
if uploaded_file is not None:
try:
df = pd.read_excel(uploaded_file)
st.success("File uploaded successfully!")
st.subheader("Preview of Uploaded Data:")
st.dataframe(df.head()) # Display first few rows
except Exception as e:
st.error(f"Error reading the Excel file: {e}")
return
st.markdown("---")
# Function Selection
st.header("🔍 Select Analysis Function")
analysis_function = st.radio("Choose Function", ("Analyze Single Column", "Analyze Multiple Columns"))
if analysis_function == "Analyze Single Column":
st.header("📈 Analyze Single Column")
column_name = st.text_input("Enter the column name or prefix:", "")
type_option = st.selectbox("Select Type Option", ("1", "2"))
if st.button("Run Analysis"):
if column_name.strip() == "":
st.error("Please enter a valid column name.")
else:
type_option_int = int(type_option)
table, fig = analyze_single_column(df, column_name, type_option_int)
if table is not None:
st.success("Analysis completed successfully!")
elif analysis_function == "Analyze Multiple Columns":
st.header("📊 Analyze Multiple Columns")
first_name = st.text_input("Enter the first column name or prefix:", "")
second_name = st.text_input("Enter the second column name or prefix:", "")
first_type = st.selectbox("Select First Type Option", ("1", "2"), key='first_type')
second_type = st.selectbox("Select Second Type Option", ("1", "2"), key='second_type')
if st.button("Run Analysis"):
if first_name.strip() == "" or second_name.strip() == "":
st.error("Please enter valid column names.")
else:
first_type_int = int(first_type)
second_type_int = int(second_type)
table, figs = analyze_multiple_columns(df, first_name, second_name, first_type_int, second_type_int)
if table is not None:
st.success("Analysis completed successfully!")
if __name__ == "__main__":
main() |