Spaces:
Running
Running
File size: 10,137 Bytes
74cbf4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from scipy.stats import norm
# Define your helper functions
def is_matching_pattern(column, prefix):
if not column.startswith(prefix + '_'):
return False
suffix = column[len(prefix) + 1:]
if 1 <= len(suffix) <= 3 and suffix.isdigit():
return True
return False
def multi_answer(df):
frequency = {}
for i in df.columns:
unique_values = list(set(df[i].dropna()))[0]
frequency[str(unique_values)] = df[i].value_counts().get(unique_values, 0)
frequency_dataframe = pd.DataFrame({
"Value": frequency.keys(),
"Frequency": frequency.values(),
"Percentile": np.array(list(frequency.values())) / len(df.dropna(how='all'))
}).sort_values(by='Value')
frequency_dataframe.loc[len(frequency_dataframe)] = ['Sample_size', len(df.dropna(how='all')), 1]
return frequency_dataframe
def single_answer(df):
counter = df.value_counts()
frequency_dataframe = pd.DataFrame({
'Value': counter.index,
'Frequency': counter.values,
'Percentage': (counter.values / counter.sum()) * 100
}).sort_values(by='Value')
frequency_dataframe.loc[len(frequency_dataframe)] = ['Sample_size', len(df.dropna()), 1]
return frequency_dataframe
def two_variable_ss(df, var1, var2):
counter = df.groupby(var1)[var2].value_counts()
frequency_dataframe = counter.unstack(fill_value=0)
column_sums = frequency_dataframe.sum(axis=0)
percentile_dataframe = frequency_dataframe.div(column_sums, axis=1)
frequency_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])[:-1]
frequency_dataframe['Sample_size'] = list(single_answer(df[var1]).iloc[:,1])
return percentile_dataframe, frequency_dataframe
# Functions related to Z-Test
def read_excel_sheets(file):
"""Reads an Excel file with multiple sheets and returns a dictionary of DataFrames."""
try:
xls = pd.ExcelFile(file)
sheets_data = {sheet: xls.parse(sheet) for sheet in xls.sheet_names}
return sheets_data
except Exception as e:
st.error(f"❌ Error reading Excel file: {e}")
return None
def z_testes(n1, n2, p1, p2):
"""Performs Z-test for proportions and returns p-value."""
try:
pooled_p = (n1 * p1 + n2 * p2) / (n1 + n2)
se = np.sqrt(pooled_p * (1 - pooled_p) * (1 / n1 + 1 / n2))
z = (p1 - p2) / se
p_value = 2 * (1 - norm.cdf(abs(z)))
return p_value
except ZeroDivisionError:
return np.nan
def Z_test_dataframes(sheets_data):
"""Processes each sheet's DataFrame and computes new DataFrames with Z-test results."""
result_dataframes = {}
for sheet_name, df in sheets_data.items():
if df.empty:
st.warning(f"⚠️ Sheet '{sheet_name}' is empty and has been skipped.")
continue
df = df.set_index(df.columns[0]) # Use the first column as index
rows, cols = df.shape
if cols < 2:
st.warning(f"⚠️ Sheet '{sheet_name}' does not have enough columns for analysis and has been skipped.")
continue
new_df = pd.DataFrame(index=df.index[:-1], columns=df.columns[1:])
for i, row_name in enumerate(df.index[:-1]):
for j, col_name in enumerate(df.columns[1:]):
try:
n1 = df.iloc[-1, 0] # x_I1
n2 = df.iloc[-1, j+1] # x_Ij
p1 = df.iloc[i, 0] # x_1J
p2 = df.iloc[i, j+1] # x_ij
p_value = z_testes(n1, n2, p1, p2)
new_df.iloc[i, j] = p_value
except Exception as e:
st.error(f"❌ Error processing sheet '{sheet_name}', row '{row_name}', column '{col_name}': {e}")
new_df.iloc[i, j] = np.nan
result_dataframes[sheet_name] = new_df
return result_dataframes
def analyze_z_test(file):
"""
Performs Z-Test analysis on the uploaded Excel file.
Parameters:
- file: Uploaded Excel file
Returns:
- result_dataframes: Dictionary of DataFrames with p-values
"""
sheets_data = read_excel_sheets(file)
if sheets_data is None:
return None
result_dataframes = Z_test_dataframes(sheets_data)
if not result_dataframes:
st.error("❌ No valid sheets found for Z-Test analysis.")
return None
st.write("### 📈 Processed Tables with Z-Test Results")
for sheet_name, df in result_dataframes.items():
st.write(f"#### Sheet: {sheet_name}")
# Apply color coding based on p-value
def color_p_value(val):
try:
if pd.isna(val):
return 'background-color: lightgray'
elif val < 0.05:
return 'background-color: lightgreen'
else:
return 'background-color: lightcoral'
except:
return 'background-color: lightgray'
styled_df = df.style.applymap(color_p_value)
# Display the styled DataFrame
st.dataframe(styled_df, use_container_width=True)
return result_dataframes
# Streamlit User Interface
st.title("Data Analysis Application")
# Main options
main_option = st.selectbox("Please select an option:", ["Tabulation", "Hypothesis test", "Machine Learning", "Coding"])
if main_option == "Tabulation":
st.header("Tabulation Analysis")
uploaded_file = st.file_uploader("Please upload your Excel file", type=["xlsx", "xls"])
if uploaded_file:
try:
df = pd.read_excel(uploaded_file)
st.subheader("Displaying the first few rows of the DataFrame")
st.dataframe(df.head())
tabulation_option = st.selectbox("Please select the type of analysis:", ["All", "Univariate", "Multivariate"])
if tabulation_option == "All":
st.info("This section of the program is under development.")
elif tabulation_option == "Univariate":
uni_option = st.selectbox("Select the type of univariate analysis:", ["Multiple answer", "Single answer"])
if uni_option == "Single answer":
var = st.text_input("Please enter the name of the desired column:")
if var:
if var in df.columns:
result_df = single_answer(df[var])
st.subheader("Univariate Analysis Results")
st.dataframe(result_df)
fig = px.bar(result_df, x='Value', y='Percentage', title='Percentage Histogram')
st.plotly_chart(fig, use_container_width=True)
else:
st.error("The entered column was not found.")
elif uni_option == "Multiple answer":
var = st.text_input("Please enter the name of the desired column:")
if var:
matching_cols = [col for col in df.columns if is_matching_pattern(col, var)]
if matching_cols:
subset_df = df[matching_cols]
result_df = multi_answer(subset_df)
st.subheader("Multiple Answer Analysis Results")
st.dataframe(result_df)
fig = px.bar(result_df, x='Value', y='Percentile', title='Percentile Histogram')
st.plotly_chart(fig, use_container_width=True)
else:
st.error("No columns matching the entered pattern were found.")
elif tabulation_option == "Multivariate":
st.subheader("Multivariate Analysis")
var1 = st.text_input("Please enter the name of the first column:")
var2 = st.text_input("Please enter the name of the second column:")
if var1 and var2:
if var1 in df.columns and var2 in df.columns:
type1 = st.selectbox("Select the type of analysis for the first column:", ["Multiple answer", "Single answer"], key='type1')
type2 = st.selectbox("Select the type of analysis for the second column:", ["Multiple answer", "Single answer"], key='type2')
if type1 == "Single answer" and type2 == "Single answer":
percentile_df, frequency_df = two_variable_ss(df[[var1, var2]], var1, var2)
st.subheader("Percentile Table")
st.dataframe(percentile_df)
st.subheader("Frequency Table")
st.dataframe(frequency_df)
fig = px.imshow(percentile_df, text_auto=True, title='Percentile Heatmap')
st.plotly_chart(fig, use_container_width=True)
else:
st.info("This section of the program is under development.")
else:
st.error("One or both of the entered columns were not found.")
except Exception as e:
st.error(f"❌ Error reading the Excel file: {e}")
elif main_option == "Hypothesis test":
st.header("Hypothesis Testing")
hypothesis_option = st.selectbox("Please select the type of hypothesis test:", ["Z test", "T test", "Chi-Square test", "ANOVA test"])
if hypothesis_option != "Z test":
st.info("This section of the program is under development.")
else:
uploaded_file = st.file_uploader("Please upload your Excel file for Z-Test", type=["xlsx", "xls"])
if uploaded_file:
result = analyze_z_test(uploaded_file)
if result:
st.success("Z-Test analysis completed successfully.")
elif main_option in ["Machine Learning", "Coding"]:
st.info("This section of the program is under development.")
|