File size: 10,137 Bytes
74cbf4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from scipy.stats import norm

# Define your helper functions
def is_matching_pattern(column, prefix):
    if not column.startswith(prefix + '_'):
        return False
    suffix = column[len(prefix) + 1:]
    if 1 <= len(suffix) <= 3 and suffix.isdigit():
        return True
    return False

def multi_answer(df):
    frequency = {}
    for i in df.columns:
        unique_values = list(set(df[i].dropna()))[0]
        frequency[str(unique_values)] = df[i].value_counts().get(unique_values, 0)

    frequency_dataframe = pd.DataFrame({
        "Value": frequency.keys(),
        "Frequency": frequency.values(),
        "Percentile": np.array(list(frequency.values())) / len(df.dropna(how='all'))
    }).sort_values(by='Value')
    frequency_dataframe.loc[len(frequency_dataframe)] = ['Sample_size', len(df.dropna(how='all')), 1]
    return frequency_dataframe

def single_answer(df):
    counter = df.value_counts()
    frequency_dataframe = pd.DataFrame({
        'Value': counter.index,
        'Frequency': counter.values,
        'Percentage': (counter.values / counter.sum()) * 100
    }).sort_values(by='Value')
    frequency_dataframe.loc[len(frequency_dataframe)] = ['Sample_size', len(df.dropna()), 1]
    return frequency_dataframe

def two_variable_ss(df, var1, var2):
    counter = df.groupby(var1)[var2].value_counts()
    frequency_dataframe = counter.unstack(fill_value=0)

    column_sums = frequency_dataframe.sum(axis=0)
    percentile_dataframe = frequency_dataframe.div(column_sums, axis=1)

    frequency_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])[:-1]
    frequency_dataframe['Sample_size'] = list(single_answer(df[var1]).iloc[:,1])

    return percentile_dataframe, frequency_dataframe

# Functions related to Z-Test
def read_excel_sheets(file):
    """Reads an Excel file with multiple sheets and returns a dictionary of DataFrames."""
    try:
        xls = pd.ExcelFile(file)
        sheets_data = {sheet: xls.parse(sheet) for sheet in xls.sheet_names}
        return sheets_data
    except Exception as e:
        st.error(f"❌ Error reading Excel file: {e}")
        return None

def z_testes(n1, n2, p1, p2):
    """Performs Z-test for proportions and returns p-value."""
    try:
        pooled_p = (n1 * p1 + n2 * p2) / (n1 + n2)
        se = np.sqrt(pooled_p * (1 - pooled_p) * (1 / n1 + 1 / n2))
        z = (p1 - p2) / se
        p_value = 2 * (1 - norm.cdf(abs(z)))
        return p_value
    except ZeroDivisionError:
        return np.nan

def Z_test_dataframes(sheets_data):
    """Processes each sheet's DataFrame and computes new DataFrames with Z-test results."""
    result_dataframes = {}
    for sheet_name, df in sheets_data.items():
        if df.empty:
            st.warning(f"⚠️ Sheet '{sheet_name}' is empty and has been skipped.")
            continue
        df = df.set_index(df.columns[0])  # Use the first column as index
        rows, cols = df.shape
        if cols < 2:
            st.warning(f"⚠️ Sheet '{sheet_name}' does not have enough columns for analysis and has been skipped.")
            continue
        new_df = pd.DataFrame(index=df.index[:-1], columns=df.columns[1:])
        for i, row_name in enumerate(df.index[:-1]):
            for j, col_name in enumerate(df.columns[1:]):
                try:
                    n1 = df.iloc[-1, 0]  # x_I1
                    n2 = df.iloc[-1, j+1]  # x_Ij
                    p1 = df.iloc[i, 0]  # x_1J
                    p2 = df.iloc[i, j+1]  # x_ij
                    p_value = z_testes(n1, n2, p1, p2)
                    new_df.iloc[i, j] = p_value
                except Exception as e:
                    st.error(f"❌ Error processing sheet '{sheet_name}', row '{row_name}', column '{col_name}': {e}")
                    new_df.iloc[i, j] = np.nan

        result_dataframes[sheet_name] = new_df

    return result_dataframes

def analyze_z_test(file):
    """
    Performs Z-Test analysis on the uploaded Excel file.

    Parameters:
    - file: Uploaded Excel file

    Returns:
    - result_dataframes: Dictionary of DataFrames with p-values
    """
    sheets_data = read_excel_sheets(file)
    if sheets_data is None:
        return None

    result_dataframes = Z_test_dataframes(sheets_data)

    if not result_dataframes:
        st.error("❌ No valid sheets found for Z-Test analysis.")
        return None

    st.write("### 📈 Processed Tables with Z-Test Results")
    for sheet_name, df in result_dataframes.items():
        st.write(f"#### Sheet: {sheet_name}")
        
        # Apply color coding based on p-value
        def color_p_value(val):
            try:
                if pd.isna(val):
                    return 'background-color: lightgray'
                elif val < 0.05:
                    return 'background-color: lightgreen'
                else:
                    return 'background-color: lightcoral'
            except:
                return 'background-color: lightgray'
        
        styled_df = df.style.applymap(color_p_value)
        
        # Display the styled DataFrame
        st.dataframe(styled_df, use_container_width=True)
    
    return result_dataframes

# Streamlit User Interface
st.title("Data Analysis Application")

# Main options
main_option = st.selectbox("Please select an option:", ["Tabulation", "Hypothesis test", "Machine Learning", "Coding"])

if main_option == "Tabulation":
    st.header("Tabulation Analysis")
    uploaded_file = st.file_uploader("Please upload your Excel file", type=["xlsx", "xls"])
    if uploaded_file:
        try:
            df = pd.read_excel(uploaded_file)
            st.subheader("Displaying the first few rows of the DataFrame")
            st.dataframe(df.head())

            tabulation_option = st.selectbox("Please select the type of analysis:", ["All", "Univariate", "Multivariate"])

            if tabulation_option == "All":
                st.info("This section of the program is under development.")
            elif tabulation_option == "Univariate":
                uni_option = st.selectbox("Select the type of univariate analysis:", ["Multiple answer", "Single answer"])

                if uni_option == "Single answer":
                    var = st.text_input("Please enter the name of the desired column:")
                    if var:
                        if var in df.columns:
                            result_df = single_answer(df[var])
                            st.subheader("Univariate Analysis Results")
                            st.dataframe(result_df)

                            fig = px.bar(result_df, x='Value', y='Percentage', title='Percentage Histogram')
                            st.plotly_chart(fig, use_container_width=True)
                        else:
                            st.error("The entered column was not found.")
                elif uni_option == "Multiple answer":
                    var = st.text_input("Please enter the name of the desired column:")
                    if var:
                        matching_cols = [col for col in df.columns if is_matching_pattern(col, var)]
                        if matching_cols:
                            subset_df = df[matching_cols]
                            result_df = multi_answer(subset_df)
                            st.subheader("Multiple Answer Analysis Results")
                            st.dataframe(result_df)

                            fig = px.bar(result_df, x='Value', y='Percentile', title='Percentile Histogram')
                            st.plotly_chart(fig, use_container_width=True)
                        else:
                            st.error("No columns matching the entered pattern were found.")
            elif tabulation_option == "Multivariate":
                st.subheader("Multivariate Analysis")
                var1 = st.text_input("Please enter the name of the first column:")
                var2 = st.text_input("Please enter the name of the second column:")

                if var1 and var2:
                    if var1 in df.columns and var2 in df.columns:
                        type1 = st.selectbox("Select the type of analysis for the first column:", ["Multiple answer", "Single answer"], key='type1')
                        type2 = st.selectbox("Select the type of analysis for the second column:", ["Multiple answer", "Single answer"], key='type2')

                        if type1 == "Single answer" and type2 == "Single answer":
                            percentile_df, frequency_df = two_variable_ss(df[[var1, var2]], var1, var2)
                            st.subheader("Percentile Table")
                            st.dataframe(percentile_df)

                            st.subheader("Frequency Table")
                            st.dataframe(frequency_df)

                            fig = px.imshow(percentile_df, text_auto=True, title='Percentile Heatmap')
                            st.plotly_chart(fig, use_container_width=True)
                        else:
                            st.info("This section of the program is under development.")
                    else:
                        st.error("One or both of the entered columns were not found.")
        except Exception as e:
            st.error(f"❌ Error reading the Excel file: {e}")

elif main_option == "Hypothesis test":
    st.header("Hypothesis Testing")
    hypothesis_option = st.selectbox("Please select the type of hypothesis test:", ["Z test", "T test", "Chi-Square test", "ANOVA test"])

    if hypothesis_option != "Z test":
        st.info("This section of the program is under development.")
    else:
        uploaded_file = st.file_uploader("Please upload your Excel file for Z-Test", type=["xlsx", "xls"])
        if uploaded_file:
            result = analyze_z_test(uploaded_file)
            if result:
                st.success("Z-Test analysis completed successfully.")

elif main_option in ["Machine Learning", "Coding"]:
    st.info("This section of the program is under development.")