Spaces:
Sleeping
Sleeping
Commit
·
d09f267
1
Parent(s):
6caf132
Bug fix: Speaker embedding
Browse files
app.py
CHANGED
@@ -55,39 +55,32 @@ def float32_to_int16(waveform):
|
|
55 |
return waveform
|
56 |
|
57 |
def get_embedding(recording):
|
58 |
-
print("Getting ResNet")
|
59 |
resnet = ResNetSE34V2(nOut=512, encoder_type='ASP')
|
60 |
recording = recording.view(1, -1)
|
61 |
-
print("Running ResNet")
|
62 |
embedding = resnet(recording)
|
63 |
return embedding
|
64 |
|
65 |
#Define predict function:
|
66 |
def predict(inp):
|
67 |
#How to transform audio from string to tensor
|
68 |
-
print("Transforming audio to tensor")
|
69 |
waveform, sample_rate = torchaudio.load(inp)
|
70 |
|
71 |
#Resample to 16kHz
|
72 |
-
print("Resampling to 16Hz")
|
73 |
transform_to_16hz = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
74 |
waveform = transform_to_16hz(waveform)
|
75 |
sample_rate = 16000
|
76 |
|
77 |
#Get speaker embedding
|
78 |
-
print("Getting speaker embedding")
|
79 |
condition_tensor = get_embedding(waveform)
|
80 |
condition_tensor = condition_tensor.reshape(1, 1, -1)
|
81 |
n_frames = waveform.shape[1]
|
82 |
condition_tensor = condition_tensor.repeat(1, n_frames, 1)
|
83 |
|
84 |
#Run model without changing weights
|
85 |
-
print("Running the model")
|
86 |
with torch.no_grad():
|
87 |
waveform = model(x=waveform, y=condition_tensor)
|
88 |
|
89 |
#Transform output audio into gradio-readable format
|
90 |
-
print("Transforming returned audio")
|
91 |
waveform = waveform.numpy()
|
92 |
waveform = float32_to_int16(waveform)
|
93 |
return sample_rate, waveform
|
|
|
55 |
return waveform
|
56 |
|
57 |
def get_embedding(recording):
|
|
|
58 |
resnet = ResNetSE34V2(nOut=512, encoder_type='ASP')
|
59 |
recording = recording.view(1, -1)
|
|
|
60 |
embedding = resnet(recording)
|
61 |
return embedding
|
62 |
|
63 |
#Define predict function:
|
64 |
def predict(inp):
|
65 |
#How to transform audio from string to tensor
|
|
|
66 |
waveform, sample_rate = torchaudio.load(inp)
|
67 |
|
68 |
#Resample to 16kHz
|
|
|
69 |
transform_to_16hz = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
70 |
waveform = transform_to_16hz(waveform)
|
71 |
sample_rate = 16000
|
72 |
|
73 |
#Get speaker embedding
|
|
|
74 |
condition_tensor = get_embedding(waveform)
|
75 |
condition_tensor = condition_tensor.reshape(1, 1, -1)
|
76 |
n_frames = waveform.shape[1]
|
77 |
condition_tensor = condition_tensor.repeat(1, n_frames, 1)
|
78 |
|
79 |
#Run model without changing weights
|
|
|
80 |
with torch.no_grad():
|
81 |
waveform = model(x=waveform, y=condition_tensor)
|
82 |
|
83 |
#Transform output audio into gradio-readable format
|
|
|
84 |
waveform = waveform.numpy()
|
85 |
waveform = float32_to_int16(waveform)
|
86 |
return sample_rate, waveform
|