Spaces:
Runtime error
Runtime error
""" | |
test_conditioning.py | |
Desc: In order to make sure that we can condition on phoneme encodings, need to ensure that | |
the model can take in 2D Embeddings | |
""" | |
import torch | |
from audio_diffusion_pytorch import DiffusionModel, UNetV0, VDiffusion, VSampler | |
import sys | |
sys.path.append('.') | |
# Example build model function | |
def create_model(): | |
return DiffusionModel( | |
net_t=UNetV0, # The model type used for diffusion | |
in_channels=2, # U-Net: number of input/output (audio) channels | |
channels=[8, 32, 64, 128, 256, 512, 512, 1024, 1024], # U-Net: channels at each layer | |
factors=[1, 4, 4, 4, 2, 2, 2, 2, 2], # U-Net: downsampling and upsampling factors at each layer | |
items=[1, 2, 2, 2, 2, 2, 2, 4, 4], # U-Net: number of repeating items at each layer | |
attentions=[0, 0, 0, 0, 0, 1, 1, 1, 1], # U-Net: attention enabled/disabled at each layer | |
attention_heads=8, # U-Net: number of attention heads per attention block | |
attention_features=64, # U-Net: number of attention features per attention block, | |
diffusion_t=VDiffusion, # The diffusion method used | |
sampler_t=VSampler, # The diffusion sampler used | |
) | |
def create_cond_model(): | |
return DiffusionModel( | |
net_t=UNetV0, # The model type used for diffusion | |
in_channels=2, # U-Net: number of input/output (audio) channels | |
channels=[8, 32, 64, 128, 256, 512, 512, 1024, 1024], # U-Net: channels at each layer | |
factors=[1, 4, 4, 4, 2, 2, 2, 2, 2], # U-Net: downsampling and upsampling factors at each layer | |
items=[1, 2, 2, 2, 2, 2, 2, 4, 4], # U-Net: number of repeating items at each layer | |
attentions=[0, 0, 0, 0, 0, 1, 1, 1, 1], # U-Net: attention enabled/disabled at each layer | |
attention_heads=8, # U-Net: number of attention heads per attention block | |
attention_features=64, # U-Net: number of attention features per attention block, | |
diffusion_t=VDiffusion, # The diffusion method used | |
sampler_t=VSampler, # The diffusion sampler used | |
embedding_features=768, # U-Net: embedding features | |
cross_attentions=[0, 0, 0, 1, 1, 1, 1, 1, 1], # U-Net: cross-attention enabled/disabled at each layer | |
) | |
def create_mel_model(): | |
return DiffusionModel( | |
net_t=UNetV0, # The model type used for diffusion | |
in_channels=64, # U-Net: number of input/output (audio) channels | |
channels=[8, 32, 64, 128, 256, 512, 512, 1024, 1024], # U-Net: channels at each layer | |
factors=[1, 4, 4, 4, 2, 2, 2, 2, 2], # U-Net: downsampling and upsampling factors at each layer | |
items=[1, 2, 2, 2, 2, 2, 2, 4, 4], # U-Net: number of repeating items at each layer | |
attentions=[0, 0, 0, 0, 0, 1, 1, 1, 1], # U-Net: attention enabled/disabled at each layer | |
attention_heads=8, # U-Net: number of attention heads per attention block | |
attention_features=64, # U-Net: number of attention features per attention block, | |
diffusion_t=VDiffusion, # The diffusion method used | |
sampler_t=VSampler, # The diffusion sampler used | |
embedding_features=768, # U-Net: embedding features | |
cross_attentions=[0, 0, 0, 1, 1, 1, 1, 1, 1], # U-Net: cross-attention enabled/disabled at each layer | |
) | |
# A file function for conditioning 2D Conditioning with random values | |
def test_2D_condition(): | |
model = create_model() | |
cond_model = create_cond_model() | |
# Pretend that input is waveform | |
audio_wave = torch.randn(1, 2, 2**18) # [batch, in_channels, length] | |
embedding = torch.randn(1, 1, 768) # [batch, num_embeddings, embedding_features] | |
y_nocond = model(audio_wave) | |
y = cond_model(audio_wave, embedding=embedding) | |
# Lets Try multiple Embeddings | |
embedding = torch.randn(1, 20, 768) # [batch, num_embeddings, embedding_features] | |
y = cond_model(audio_wave, embedding=embedding) | |
del model | |
del cond_model | |
mel_model = create_mel_model() | |
# Pretend that input is mel-spec | |
audio_wave = torch.randn(1, 64, 2**18) # [batch, in_channels, length] | |
embedding = torch.randn(1, 64, 768) # [batch, num_embeddings, embedding_features]; should be [batch, length, phone_embed_dim] | |
y = mel_model(audio_wave, embedding = embedding) | |
if __name__ == "__main__": | |
# Note: The below function works as is | |
test_2D_condition() |