ALeLacheur's picture
Update audio_diffusion_attacks_forhf/src/music_gen.py
854d436 verified
from transformers import AutoProcessor, MusicgenForConditionalGeneration
#Andy removed: from datasets import load_dataset
import torchaudio
import torch
#Andy edited: import losses
import audio_diffusion_attacks_forhf.src.losses as losses
from audiotools import AudioSignal
class MusicGenEval:
def __init__(self, input_sample_rate, audio_steps):
model_name="facebook/musicgen-stereo-small"
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name)
#Andy commented: self.model=self.model.to(device='cuda')
self.input_sample_rate=input_sample_rate
self.audio_steps=audio_steps
self.mel_loss = losses.MelSpectrogramLoss(n_mels=[5, 10, 20, 40, 80, 160, 320],
window_lengths=[32, 64, 128, 256, 512, 1024, 2048],
mel_fmin=[0, 0, 0, 0, 0, 0, 0],
pow=1.0,
clamp_eps=1.0e-5,
mag_weight=0.0)
def eval(self, original_audio, protected_audio):
original_audio=original_audio[:, :, :self.audio_steps]
protected_audio=protected_audio[:, :, :self.audio_steps]
input_len=original_audio.shape[-1]
#Andy edited: unprotected_gen=self.generate_audio(original_audio)[0].to(device='cuda')
unprotected_gen=self.generate_audio(original_audio)[0]
#Andy edited: protected_gen=self.generate_audio(protected_audio)[0].to(device='cuda')
protected_gen=self.generate_audio(protected_audio)[0]
eval_dict={}
# Difference between original and unprotected gen
eval_dict["original_unprotectedgen_l1"]=torch.mean(torch.abs(original_audio-unprotected_gen[:, :input_len]))
eval_dict["original_unprotectedgen_mel"]=self.mel_loss(AudioSignal(original_audio, self.input_sample_rate), AudioSignal(unprotected_gen[:, :input_len], self.input_sample_rate))
# Difference between original and protected gen
eval_dict["original_protectedgen_l1"]=torch.mean(torch.abs(original_audio-protected_gen[:, :input_len]))
eval_dict["original_protectedgen_mel"]=self.mel_loss(AudioSignal(original_audio, self.input_sample_rate), AudioSignal(protected_gen[:, :input_len], self.input_sample_rate))
# Difference between protected and protected gen
eval_dict["protected_protectedgen_l1"]=torch.mean(torch.abs(protected_audio-protected_gen[:, :input_len]))
eval_dict["protected_protectedgen_mel"]=self.mel_loss(AudioSignal(protected_audio, self.input_sample_rate), AudioSignal(protected_gen[:, :input_len], self.input_sample_rate))
# Difference between unprotected gen and protected gen
eval_dict["protectedgen_unprotectedgen_l1"]=torch.mean(torch.abs(protected_gen-unprotected_gen))
eval_dict["protectedgen_unprotectedgen_mel"]=self.mel_loss(AudioSignal(protected_gen, self.input_sample_rate), AudioSignal(unprotected_gen, self.input_sample_rate))
return eval_dict, unprotected_gen, protected_gen
def generate_audio(self, audio):
torch.manual_seed(0)
#Andy edited: transform = torchaudio.transforms.Resample(self.input_sample_rate, 32000).to(device='cuda')
transform = torchaudio.transforms.Resample(self.input_sample_rate, 32000)
waveform=transform(audio[0]).detach().cpu()
# waveform.clamp_(0,1)
a=torch.min(waveform)
b=torch.max(waveform)
c=waveform.isnan().any()
# sample = processor(raw_audio=waveform, sampling_rate=48000, return_tensors="pt")
inputs = self.processor(
audio=waveform,
sampling_rate=32000,
text=["music"],
padding=True,
return_tensors="pt",
)
for d in inputs.data:
#Andy edited: inputs.data[d]=inputs.data[d].to(device='cuda')
inputs.data[d]=inputs.data[d]
audio_values = self.model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=1024)
#Andy edited: transform = torchaudio.transforms.Resample(32000, self.input_sample_rate).to(device='cuda')
transform = torchaudio.transforms.Resample(32000, self.input_sample_rate)
audio_values=transform(audio_values)
return audio_values
model_name="facebook/musicgen-stereo-small"
processor = AutoProcessor.from_pretrained(model_name)
#Andy commented (hesitant): model = MusicgenForConditionalGeneration.from_pretrained(model_name).to(device='cuda')
'''Andy commented (hesitant):
song_name="Texas Sun"
waveform, sample_rate = torchaudio.load(f"test_audio/{song_name}.mp3")
waveform=waveform[:, :500000]
torch.manual_seed(0)
transform = torchaudio.transforms.Resample(sample_rate, 32000)
waveform=transform(waveform)
# sample = processor(raw_audio=waveform, sampling_rate=48000, return_tensors="pt")
inputs = processor(
audio=waveform,
sampling_rate=32000,
text=["music"],
padding=True,
return_tensors="pt",
)
for d in inputs.data:
inputs.data[d]=inputs.data[d].to(device='cuda')
audio_values = model.generate(**inputs, do_sample=False, guidance_scale=3, max_new_tokens=512, top_k=0, top_p=250)
torchaudio.save(f"test_audio/perturbed/{model_name[9:]}_{song_name}.mp3", audio_values.detach().cpu()[0], 32000)
u=0
'''