Spaces:
Runtime error
Runtime error
File size: 4,995 Bytes
5a9b731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
"""
test_audioldm.py
Desc: Using example clips from the Free Music Archive (FMA), test out AudioLDM2
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy
import torch
import torchaudio
import os
import ast
import soundfile as sf
# Old Code for Importing AudioLDM
# from audioldm.pipeline import build_model
# HF Code for AudioLDM2
# from diffusers import AudioLDM2Pipeline
from audioldm.audio import wav_to_fbank, TacotronSTFT
try:
from audioldm2 import build_model
except:
from audioldm2 import build_model
# Change the below to desired GPU if using GPU
# os.environ['CUDA_VISIBLE_DEVICES'] = '4'
if __name__ == '__main__':
data_loc = '/data/robbizorg/music_datasets/fma/'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Instantiate AudioLDM
# repo_id = "cvssp/audioldm2-music"
# pipe = AudioLDM2Pipeline.from_pretrained(repo_id) #torch_dtype = torch.float16)
# pipe = pipe.to('cuda')
model = build_model()
# audio_codec = build_model().to(device)
# audio_codec.latent_t_size = 256
example_audio_loc = os.path.join(data_loc, 'data/fma_large/000/000420.mp3')
audio, sr = torchaudio.load(example_audio_loc)
mono_audio = torch.mean(audio, axis = 0) # Convert to Mono
print("Audio Size and Sampling Rate")
print(audio.shape, sr)
print(f"Audio is {np.round(audio.shape[-1]/sr/60, 2)} minutes long")
# Let's check the generation capabilities
# prompt = "Techno music with an energetic riff."
# negative_prompt = "Low quality."
# generator = torch.Generator("cuda").manual_seed(0)
# gen_audio = pipe(
# prompt,
# negative_prompt=negative_prompt,
# num_inference_steps=200,
# audio_length_in_s=10.0,
# num_waveforms_per_prompt=3,
# generator=generator,
# ).audios
# Omg these generated audios are so bad
# scipy.io.wavfile.write("./assets/audios/hyperpop.wav", rate=16000, data=gen_audio[0])
# Test Vocoder Abilities
mono_audio = mono_audio.to('cuda')
# Resample Audio
resamp_audio = torchaudio.functional.resample(mono_audio, sr, 48000)
resamp_16k = torchaudio.functional.resample(mono_audio, sr, 16000)
# feats = pipe.feature_extractor(resamp_audio.cpu().numpy(), sampling_rate = 48000)['input_features']
# feats = torch.Tensor(feats[0]).to(device)
# wav = pipe.vocoder(feats)
# pipe.vae needs mel-spec
"""
Config for Mel Spec
{'audio':
{'sampling_rate': 16000, 'max_wav_value': 32768, 'duration': 10.24},
'stft': {'filter_length': 1024, 'hop_length': 160, 'win_length': 1024},
'mel': {'n_mel_channels': 64, 'mel_fmin': 0, 'mel_fmax': 8000}}
"""
default_mel_config = {
"preprocessing": {
"audio": {
"sampling_rate": 16000,
"max_wav_value": 32768,
"duration": 10.24,
},
"stft": {"filter_length": 1024, "hop_length": 160, "win_length": 1024},
"mel": {"n_mel_channels": 64, "mel_fmin": 0, "mel_fmax": 8000},
}}
fn_STFT = TacotronSTFT(
default_mel_config["preprocessing"]["stft"]["filter_length"],
default_mel_config["preprocessing"]["stft"]["hop_length"],
default_mel_config["preprocessing"]["stft"]["win_length"],
default_mel_config["preprocessing"]["mel"]["n_mel_channels"],
default_mel_config["preprocessing"]["audio"]["sampling_rate"],
default_mel_config["preprocessing"]["mel"]["mel_fmin"],
default_mel_config["preprocessing"]["mel"]["mel_fmax"],
)
duration = resamp_16k.shape[0]/16000
target_length = int(duration * 100) # int(duration * 102.4)
mel_1, _, _ = wav_to_fbank(resamp_16k.cpu(), target_length=target_length, fn_STFT=fn_STFT)
# wav = pipe.vocoder(mel_1.to(device))
wav = model.mel_spectrogram_to_waveform(mel_1.unsqueeze(0).to(device), save = False)
wav = wav[0, :, :]
# Normalize Generated Waveform
todo_waveform = (
wav / np.max(np.abs(wav))
) * 0.8 # Normalize the energy of the generation output
# torchaudio.save('assets/audios/example_reconst.wav', wav, sample_rate = 16000)
# Mel and Back results in a bit of a volume loss?
sf.write('./assets/audios/example_reconst.wav', todo_waveform[0, :], samplerate = 16000)
sf.write('./assets/audios/example_reconst_orig.wav', resamp_16k.cpu().numpy(), samplerate = 16000)
# Let's test the VAE
mel_1 = mel_1.unsqueeze(0).unsqueeze(0).to(device)
encode = model.first_stage_model.encode(mel_1).mean
decode = model.first_stage_model.decode(encode)
reconst_wav = model.mel_spectrogram_to_waveform(decode.squeeze(0), save = False)
todo_waveform = (
wav / np.max(np.abs(wav))
) * 0.8 # Normalize the energy of the generation output
sf.write('./assets/audios/example_reconst_frommel.wav', todo_waveform[0, :], samplerate = 16000)
|