Spaces:
Runtime error
Runtime error
File size: 23,140 Bytes
5a9b731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
"""
train_tts.py
Desc: An example script for training a Diffusion-based TTS model with a speaker encoder.
"""
import sys
import torch
import torch.nn as nn
import torchaudio
import gc
import argparse
import os
from tqdm import tqdm
import wandb
from audio_diffusion_pytorch import DiffusionModel, UNetV0, VDiffusion, VSampler
sys.path.append(".")
from models.style_diffusion import StyleVDiffusion, StyleVSampler
# from models.utils import MonoTransform
# from util import calculate_codebook_bitrate, extract_melspectrogram, get_audio_file_bitrate, get_duration, load_neural_audio_codec
from audioldm.pipeline import build_model
import torch.multiprocessing as mp
# Needed for Instruction/Prompt Models
# from transformers import AutoTokenizer, T5EncoderModel
import logging
# Uncomment out below if wanting to supress
# import warnings
# warnings.filterwarnings("ignore")
# Set Sample Rate if like so if desired
SAMPLE_RATE = 16000
BATCH_SIZE = 16
NUM_SAMPLES = int(2.56 * SAMPLE_RATE)
# NUM_SAMPLES = 2 ** 15
def create_model():
return DiffusionModel(
net_t=UNetV0, # The model type used for diffusion (U-Net V0 in this case)
# dim=2, # for spectrogram we use 2D-CNN
in_channels=314, # U-Net: number of input (audio) channels
out_channels=157, # U-Net: number of output (audio) channels
channels=[256, 256, 512, 512, 768, 768, 1280, 1280], # U-Net: channels at each layer
factors=[2, 2, 2, 2, 2, 2, 2, 1], # U-Net: downsampling and upsampling factors at each layer
items=[2, 2, 2, 2, 2, 2, 2, 2], # U-Net: number of repeating items at each layer
attentions=[0, 0, 0, 0, 1, 1, 1, 1], # U-Net: attention enabled/disabled at each layer
attention_heads=8, # U-Net: number of attention heads per attention item
attention_features=64, # U-Net: number of attention features per attention item
diffusion_t=StyleVDiffusion, # The diffusion method used
sampler_t=StyleVSampler, # The diffusion sampler used
# embedding_features = 8,
# embedding_features = 2, # Embedding for when it's just res and weight
embedding_features = 7, # Embedding Features for when Severity is Dropped
cross_attentions=[0, 0, 0, 0, 1, 1, 1, 1]
)
def main():
pass
# args = parse_args()
# os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
# os.environ["CUDA_VISIBLE_DEVICES"] = args['cuda_ids']
# cuda_ids = [phy_id for phy_id in range(len(args['cuda_ids'].split(",")))]
# logging.basicConfig(
# format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
# datefmt="%Y-%m-%d %H:%M:%S",
# level=os.environ.get("LOGLEVEL", "INFO").upper(),
# stream=sys.stdout,
# filemode='w',
# )
# logger = logging.getLogger("")
# # mp.set_start_method('spawn')
# # mp.set_sharing_strategy('file_system')
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# # Load in text model
# # tokenizer = AutoTokenizer.from_pretrained("t5-small")
# # text_model = T5EncoderModel.from_pretrained("t5-small")
# # text_model.eval() # Don't want to train it!
# dataset = DSVAE_CondStyleWAVDataset(
# path="/data/robbizorg/pqvd_gen_w_conditioning/speech_non_speech_timesteps_VCTK.json",
# random_crop_size=NUM_SAMPLES,
# sample_rate=SAMPLE_RATE,
# transforms=AllTransform(
# mono=True,
# ),
# reconstructive = False, # Make this true to just train a reconstructive model
# identity_limit = 1 # Affects how often we learn identity mapping
# )
# print(f"Dataset length: {len(dataset)}")
# dataloader = torch.utils.data.DataLoader(
# dataset,
# batch_size=BATCH_SIZE,
# shuffle=True,
# num_workers=16,
# pin_memory=False,
# )
# vae_model = DSVAE(logger, **args).cuda()
# if not os.path.exists(args['model_path']):
# logger.warning("model not exist and we just create the new model......")
# else:
# logger.info("Model Exists")
# logger.info("Model Path is " + args['model_path'])
# vae_model.loadParameters(args['model_path'])
# vae_model = torch.nn.DataParallel(vae_model, device_ids = cuda_ids, output_device=cuda_ids[0])
# vae_model = vae_model.cuda()
# vae_model.eval()
# vae_model.module.eer = True
# diff_model = create_model().to(device)
# # audio_codec = build_model().to(device)
# # audio_codec.latent_t_size = 157
# # config, audio_codec, vocoder = load_neural_audio_codec('2021-05-19T22-16-54_vggsound_codebook', './logs', device)
# # optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
# optimizer = torch.optim.AdamW(params=list(diff_model.parameters()), lr=1e-4, betas= (0.95, 0.999), eps=1e-6, weight_decay=1e-3)
# print(f"Number of parameters: {sum(p.numel() for p in diff_model.parameters() if p.requires_grad)}")
# run_id = wandb.util.generate_id()
# if args["run_id"] is not None:
# run_id = args["run_id"]
# print(f"Run ID: {run_id}")
# wandb.init(project="audio-diffusion-no-condition", resume=args["resume"], id=run_id)
# epoch = 0
# step = 0
# checkpoint_path = os.path.join(args["checkpoint"], args["run_id"])
# if not os.path.exists(checkpoint_path):
# os.makedirs(checkpoint_path)
# os.makedirs(os.path.join(checkpoint_path, "mels"))
# os.makedirs(os.path.join(checkpoint_path, "wavs"))
# if wandb.run.resumed:
# if os.path.exists(checkpoint_path):
# checkpoint = torch.load(checkpoint_path)
# else:
# checkpoint = torch.load(wandb.restore(checkpoint_path))
# diff_model.load_state_dict(checkpoint['model_state_dict'])
# optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# epoch = checkpoint['epoch']
# step = epoch * len(dataloader)
# scaler = torch.cuda.amp.GradScaler()
# diff_model.train()
# while epoch < 101:
# avg_loss = 0
# avg_loss_step = 0
# progress = tqdm(dataloader)
# for i, (audio, target, embedding) in enumerate(progress):
# optimizer.zero_grad()
# audio = audio.to(device)
# target = target.to(device)
# embedding = embedding.to(device)
# with torch.no_grad():
# embedding = embedding.float() # Make it float like the others
# speaker_embed_source, content_embed_source = vae_model(audio)
# speaker_embed_source = speaker_embed_source.unsqueeze(1).expand(-1, 157, -1)
# audio_embed = torch.cat((speaker_embed_source, content_embed_source), axis = -1)
# # zeroes = torch.zeros(16, 3, 128, dtype=audio_embed.dtype, device = audio_embed.device)
# # audio_embed = torch.cat((audio_embed, zeroes), dim=1)
# speaker_embed, content_embed = vae_model(target)
# speaker_embed = speaker_embed.unsqueeze(1).expand(-1, 157, -1)
# # in order to simulate paired data, do (naive) voice conversion first
# target_embed = torch.cat((speaker_embed, content_embed_source), axis = -1)
# # target_embed = torch.cat((target_embed, zeroes), dim = 1)
# with torch.cuda.amp.autocast():
# loss = diff_model(audio_embed, target_embed, embedding=embedding)
# avg_loss += loss.item()
# avg_loss_step += 1
# scaler.scale(loss).backward()
# scaler.step(optimizer)
# scaler.update()
# progress.set_postfix(
# # loss=loss.item(),
# loss=avg_loss / avg_loss_step,
# epoch=epoch + i / len(dataloader),
# )
# if step % 500 == 0:
# # if step % 1 == 0:
# # Turn noise into new audio sample with diffusion
# noise = torch.randn(1, 157, 128, device=device)
# with torch.cuda.amp.autocast():
# sample = diff_model.sample(audio_embed[0], noise, embedding=embedding[0][None, :], num_steps=200)
# # Save the melspecs
# audio_sub = torch.swapaxes(audio[0].unsqueeze(0), 1, 2)
# # target_sub = torch.swapaxes(target[0].unsqueeze(0), 1, 2) # This is the original target audio, not what we want
# target_sub = vae_model.module.share_decoder(target_embed).loc
# gen_mel = vae_model.module.share_decoder(sample).loc
# vae_model.module.draw_mel(audio_sub, mode=f"source_{step}", file_path = os.path.join(checkpoint_path, "mels"))
# vae_model.module.draw_mel(target_sub, mode=f"target_{step}", file_path = os.path.join(checkpoint_path, "mels"))
# vae_model.module.draw_mel(gen_mel, mode=f"gen_{step}", file_path = os.path.join(checkpoint_path, "mels"))
# vae_model.module.mel2wav(audio_sub, mode=f"source_{step}", task="vc", file_path = os.path.join(checkpoint_path, "wavs"))
# vae_model.module.mel2wav(target_sub, mode=f"target_{step}", task="vc", file_path = os.path.join(checkpoint_path, "wavs"))
# vae_model.module.mel2wav(gen_mel, mode=f"gen_{step}", task="vc", file_path = os.path.join(checkpoint_path, "wavs"))
# # torchaudio.save(os.path.join(checkpoint_path, 'wavs', f'test_input_sound_{step}.wav'), torch.from_numpy(audio_codec.mel_spectrogram_to_waveform(audio_codec.decode_first_stage(audio[0].unsqueeze(0))))[0], SAMPLE_RATE)
# # torchaudio.save(os.path.join(checkpoint_path, 'wavs', f'test_generated_sound_{step}.wav'), torch.from_numpy(audio_codec.mel_spectrogram_to_waveform(audio_codec.decode_first_stage(sample[0].unsqueeze(0))))[0], SAMPLE_RATE)
# # torchaudio.save(os.path.join(checkpoint_path, 'wavs', f'test_target_sound_{step}.wav'), torch.from_numpy(audio_codec.mel_spectrogram_to_waveform(audio_codec.decode_first_stage(target[0].unsqueeze(0))))[0], SAMPLE_RATE)
# wandb.log({
# "step": step,
# "epoch": epoch + i / len(dataloader),
# "loss": avg_loss / avg_loss_step,
# "input_mel": wandb.Image(os.path.join(checkpoint_path, "mels", f"source_{step}_mel_0.png"), caption="Input Mel"),
# "target_mel": wandb.Image(os.path.join(checkpoint_path, "mels", f"target_{step}_mel_0.png"), caption="Target Mel"),
# "gen_mel": wandb.Image(os.path.join(checkpoint_path, "mels", f"gen_{step}_mel_0.png"), caption="Gen Mel"),
# "input_audio": wandb.Audio(os.path.join(checkpoint_path, 'wavs', f'source_{step}0.wav'), caption="Input audio", sample_rate=SAMPLE_RATE),
# "target_audio": wandb.Audio(os.path.join(checkpoint_path, 'wavs', f'target_{step}0.wav'), caption="Target audio", sample_rate=SAMPLE_RATE),
# "generated_audio": wandb.Audio(os.path.join(checkpoint_path, 'wavs', f'gen_{step}0.wav'), caption="Generated audio", sample_rate=SAMPLE_RATE)
# })
# if step % 100 == 0:
# wandb.log({
# "step": step,
# "epoch": epoch + i / len(dataloader),
# "loss": avg_loss / avg_loss_step,
# })
# avg_loss = 0
# avg_loss_step = 0
# step += 1
# epoch += 1
# if epoch % 100 == 0:
# torch.save({
# 'epoch': epoch,
# 'model_state_dict': diff_model.state_dict(),
# 'optimizer_state_dict': optimizer.state_dict(),
# }, os.path.join(checkpoint_path, f"epoch-{epoch}.pt"))
# wandb.save(checkpoint_path, base_path=args["checkpoint"])
# def parse_args():
# parser = argparse.ArgumentParser()
# parser.add_argument("--checkpoint", type=str, default='/data/robbizorg/pqvd_gen_w_dsvae/checkpoints/')
# parser.add_argument("--resume", action="store_true")
# parser.add_argument("--run_id", type=str, default='condition_ldm')
# ## Params from DSVAE
# parser.add_argument('--dataset', type=str, default="VCTK", help='VCTK, LibriTTS')
# parser.add_argument('--encoder', type=str, default='dsvae', help='dsvae. tdnn')
# parser.add_argument('--vocoder', type=str, default='hifigan', help='wavenet, hifigan')
# parser.add_argument('--save_tsne', dest='save_tsne', action='store_true', help='save_tsne')
# parser.add_argument('--mel_tsne', dest='mel_tsne', action='store_true', help='mel_tsne')
# parser.add_argument('--feature', type=str, default='mel_spec', help='stft, mel_spec, mfcc')
# parser.add_argument('--model_path', type=str, default='/home/robbizorg/research/dsvae/save_models/dsvae/best699.pth')
# # parser.add_argument('--model_path', type=str, default='/data/andreaguz/save_models/dsvae_003_03/best699.pth') # Using the fine-tuned dsvae
# # parser.add_argument('--model_path', type=str, default='/data/andreaguz/save_models/dsvae_0001_0005/best.pth') # Using the fine-tuned dsvae
# parser.add_argument('--save_path', type=str, default='save_models/dsvae')
# parser.add_argument('--cuda_ids', type=str, default='0')
# parser.add_argument('--tsne_mode', type=str, default='test')
# parser.add_argument("--optimizer", type=str, default='adam', help='sgd, adam')
# parser.add_argument("--path_vc_1", type=str, default='', help='')
# parser.add_argument("--path_vc_2", type=str, default='', help='')
# parser.add_argument('--max_frames', type=int, default=100, help='1frame~10ms')
# parser.add_argument("--hop_size", type=int, default=256, help='hop_size')
# parser.add_argument("--win_length", type=int, default=1024, help='win_length')
# parser.add_argument("--spk_dim", type=int, default=64, help='spk_embed')
# parser.add_argument("--ecapa_spk_dim", type=int, default=128, help='ecapa spk_embed')
# parser.add_argument("--content_dim", type=int, default=64, help="content_embed")
# parser.add_argument("--conformer_hidden_dim", type=int, default=256, help="content_embed")
# parser.add_argument('--n_epochs', type=int, default=700, help='n_epochs')
# parser.add_argument('--eval_epoch', type=int, default=5, help='eval_epoch')
# parser.add_argument('--step_size', type=int, default=5, help='step_size')
# parser.add_argument('--num_workers', type=int, default=16, help='num_workers')
# parser.add_argument('--lr_decay_rate',type=float, default=0.95, help='lr_decay_rate')
# parser.add_argument('--lr',type=float, default=3e-4, help='lr_rate')
# # parser.add_argument('--klf_factor', type=float, default=3e-3, help='klf_factor')
# # parser.add_argument('--klt_factor', type=float, default=5, help='klt_factor')
# parser.add_argument('--klf_factor', type=float, default=3e-4, help='klf_factor') # Changed for the Fine-tuned Version
# parser.add_argument('--klt_factor', type=float, default=3e-3, help='klt_factor')
# parser.add_argument('--rec_factor', type=float, default=1, help='rec_factor')
# parser.add_argument('--vq_factor', type=float, default=1000, help='vq_factor')
# parser.add_argument('--zf_vq_factor', type=float, default=1000, help='vq_factor')
# parser.add_argument('--klf_std', type=float, default=0.5, help='klf_std')
# parser.add_argument('--rec_std', type=float, default=0.04, help='rec_std')
# parser.add_argument('--clip', type=float, default=1, help='rec_std')
# parser.add_argument('--phoneme_factor', type=float, default=1, help='phoneme_factor')
# parser.add_argument('--r_vq_factor', type=float, default=10, help='r_vq_factor')
# parser.add_argument('--compute_speaker_eer', dest='compute_speaker_eer', action='store_true', help='ASV EER')
# parser.add_argument('--eval_phoneme', dest='eval_phoneme', action='store_true', help='ASV EER')
# parser.add_argument('--num_eval', type=int, default=20, help='num of segments for eval')
# parser.add_argument('--batch_size', type=int, default=256, help='batch_size')
# parser.add_argument('--num_phonemes', type=int, default=100, help='num_phonemes')
# parser.add_argument('--with_phoneme', dest='with_phoneme', action='store_true', help='')
# parser.add_argument("--conversion", action='store_true', help='for conversion text')
# parser.add_argument("--conversion2", action='store_true', help='for conversion text')
# parser.add_argument("--conversion3", action='store_true', help='for conversion text')
# parser.add_argument("--mel2npy", action='store_true', help='mel2npy')
# parser.add_argument("--unconditional", action='store_true', help='unconditional')
# parser.add_argument('--zt_norm_mean', action='store_true', help='instancenorm1d on zt prior and post')
# parser.add_argument('--zf_norm_mean', action='store_true', help='instancenorm1d on zf prior and post')
# parser.add_argument('--freeze_encoder', action='store_true', help='if or not to freeze encoder')
# parser.add_argument('--freeze_decoder', action='store_true', help='if or not to freeze decoder')
# parser.add_argument("--sample_rate",type=int, default=16000, help='16000 or 48000')
# parser.add_argument('--noise_path', type=str, default='datasets/noise_list.scp', help='nosie invariant')
# parser.add_argument('--wav_aug_train', action='store_true', help='with data augmentation')
# parser.add_argument('--spec_aug_train', action='store_true', help='with data augmentation')
# parser.add_argument('--noise_train', action='store_true', help='noise')
# parser.add_argument('--triphn', action='store_true', help='with triphn')
# parser.add_argument('--train_hifigan', action='store_true', help='train hifigan')
# parser.add_argument("--prior_alignment", action='store_true', help='')
# parser.add_argument("--zf_vq", action='store_true', help='')
# parser.add_argument("--vq_prior_independent", action='store_true', help='')
# parser.add_argument("--vq_prior_regressive", action='store_true', help='')
# parser.add_argument("--vq_prior_pseudo", action='store_true', help='')
# parser.add_argument("--vq_size_zt",type=int, default=200, help='')
# parser.add_argument("--vq_size_zf",type=int, default=200, help='')
# parser.add_argument("--ignore_index",type=int, default=0, help='')
# parser.add_argument("--hidden_dim",type=int, default=256, help='')
# parser.add_argument("--share_encoder", type=str, default='cnn', help='')
# parser.add_argument("--share_decoder", type=str, default='cnn_lstm', help='cnn_lstm, cnn_transformer')
# parser.add_argument("--zt_encoder", type=str, default='lstm', help='lstm, conformer_encoder, transformer_encoder')
# parser.add_argument("--zf_encoder", type=str, default='lstm', help='lstm, transformer_encoder, ecapa_tdnn')
# parser.add_argument("--zt_prior_model", type=str, default='lstm', help='lstm, vqvae, transformer')
# parser.add_argument("--prior_signal", type=str, default='None', help='alignment_triphn, alignment_mono, melspec_pseudo, wavlm_pseudo, vq_embeds, vq_pseudo')
# parser.add_argument("--multi_scale_add", action='store_true', help='')
# parser.add_argument("--multi_scale_cat", action='store_true', help='')
# parser.add_argument("--num_scales",type=int, default=1, help='')
# parser.add_argument("--kmeans_num_clusters",type=int, default=50, help='')
# parser.add_argument("--wavlm_dim", type=int, default=768, help='')
# parser.add_argument("--ema_zt", action='store_true', help='')
# parser.add_argument("--ema_zf", action='store_true', help='')
# parser.add_argument("--r_vqvae", action='store_true', help='')
# parser.add_argument("--masked_mel", action='store_true', help='')
# parser.add_argument("--rec_noise", action='store_true', help='')
# parser.add_argument("--rec_mask", action='store_true', help='')
# parser.add_argument("--mel_classification", action='store_true', help='')
# parser.add_argument("--test_script", action='store_true', help='')
# parser.add_argument("--no_klt", action='store_true', help='')
# parser.add_argument("--zt_prior_ce_r_vq", action='store_true', help='')
# parser.add_argument('--zt_prior_ce_r_vq_factor', type=float, default=1000, help='factor')
# parser.add_argument("--zt_post_ce_r_vq", action='store_true', help='')
# parser.add_argument("--zt_prior_ce_kmeans", action='store_true', help='')
# parser.add_argument('--zt_prior_ce_kmeans_factor', type=float, default=1000, help='factor')
# parser.add_argument("--zt_post_ce_kmeans", action='store_true', help='')
# parser.add_argument('--zt_post_ce_kmeans_factor', type=float, default=10, help='factor')
# parser.add_argument("--zt_prior_ce_alignment", action='store_true', help='')
# parser.add_argument('--zt_prior_ce_alignment_factor', type=float, default=1000, help='factor')
# parser.add_argument("--prior_type", type=str, default='None', help='normal, condition, lm')
# parser.add_argument("--prior_embedding", type=str, default='one-hot', help='one-hot, embedding')
# parser.add_argument("--prior_mask", action='store_true', help='')
# parser.add_argument("--wavlm", action='store_true', help='')
# parser.add_argument("--wavlm_type", type=str, default='base', help='')
# parser.add_argument("--tts_phn_wav_path", type=str, default='', help='')
# parser.add_argument("--sr", type=str, default="16000", help='')
# parser.add_argument("--text", type=str, default="your tts", help='')
# parser.add_argument("--tts_align", action='store_true', help='')
# parser.add_argument("--tts_wavlm", action='store_true', help='')
# parser.add_argument("--tts", action='store_true', help='')
# parser.add_argument("--tts_config", type=str, default="conf/LibriTTS/preprocess.yaml", help='')
# parser.add_argument("--tts_target_wav_path", type=str, default='', help='')
# parser.add_argument("--speed", type=float, default='1.0', help='')
# parser.add_argument("--train_mapping", action='store_true', help='')
# parser.add_argument("--mapping_encoder", type=str, default='lstm', help='')
# parser.add_argument("--mapping_model_path", type=str, default='lstm', help='')
# parser.add_argument("--mask_mapping", action='store_true', help='')
# parser.add_argument("--mask_mapping_factor", type=float, default=1, help='')
# parser.add_argument("--l1_mapping_factor", type=float, default=1, help='')
# parser.add_argument("--mapping_ratio", type=float, default=1.0, help='')
# parser.add_argument("--condition2", action='store_true', help='')
# args = parser.parse_args()
# return update_args(**vars(args))
# if __name__ == "__main__":
# # torch.cuda.empty_cache()
# main() |