File size: 23,140 Bytes
5a9b731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
""" 
train_tts.py
    Desc: An example script for training a Diffusion-based TTS model with a speaker encoder. 
"""

import sys

import torch
import torch.nn as nn
import torchaudio
import gc
import argparse
import os
from tqdm import tqdm
import wandb
from audio_diffusion_pytorch import DiffusionModel, UNetV0, VDiffusion, VSampler

sys.path.append(".")
from models.style_diffusion import StyleVDiffusion, StyleVSampler
# from models.utils import MonoTransform

# from util import calculate_codebook_bitrate, extract_melspectrogram, get_audio_file_bitrate, get_duration, load_neural_audio_codec
from audioldm.pipeline import build_model
import torch.multiprocessing as mp

# Needed for Instruction/Prompt Models
# from transformers import AutoTokenizer, T5EncoderModel

import logging

# Uncomment out below if wanting to supress 
# import warnings
# warnings.filterwarnings("ignore")

# Set Sample Rate if like so if desired
SAMPLE_RATE = 16000
BATCH_SIZE = 16
NUM_SAMPLES = int(2.56 * SAMPLE_RATE)
# NUM_SAMPLES = 2 ** 15


def create_model():
    return DiffusionModel(
        net_t=UNetV0, # The model type used for diffusion (U-Net V0 in this case)
        # dim=2, # for spectrogram we use 2D-CNN
        in_channels=314, # U-Net: number of input (audio) channels
        out_channels=157, # U-Net: number of output (audio) channels
        channels=[256, 256, 512, 512, 768, 768, 1280, 1280], # U-Net: channels at each layer
        factors=[2, 2, 2, 2, 2, 2, 2, 1], # U-Net: downsampling and upsampling factors at each layer
        items=[2, 2, 2, 2, 2, 2, 2, 2], # U-Net: number of repeating items at each layer
        attentions=[0, 0, 0, 0, 1, 1, 1, 1], # U-Net: attention enabled/disabled at each layer
        attention_heads=8, # U-Net: number of attention heads per attention item
        attention_features=64, # U-Net: number of attention features per attention item
        diffusion_t=StyleVDiffusion, # The diffusion method used
        sampler_t=StyleVSampler, # The diffusion sampler used
        # embedding_features = 8,
        # embedding_features = 2, # Embedding for when it's just res and weight
        embedding_features = 7, # Embedding Features for when Severity is Dropped
        cross_attentions=[0, 0, 0, 0, 1, 1, 1, 1]
    )

def main():
    pass
    # args = parse_args()

    # os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
    # os.environ["CUDA_VISIBLE_DEVICES"] = args['cuda_ids']
    # cuda_ids = [phy_id for phy_id in range(len(args['cuda_ids'].split(",")))]

    # logging.basicConfig(
    #     format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    #     datefmt="%Y-%m-%d %H:%M:%S",
    #     level=os.environ.get("LOGLEVEL", "INFO").upper(),
    #     stream=sys.stdout,
    #     filemode='w',
    # )
    # logger = logging.getLogger("")

    # # mp.set_start_method('spawn')
    # # mp.set_sharing_strategy('file_system')

    # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

#     # Load in text model
#     # tokenizer = AutoTokenizer.from_pretrained("t5-small")
#     # text_model = T5EncoderModel.from_pretrained("t5-small")
#     # text_model.eval() # Don't want to train it!


#     dataset = DSVAE_CondStyleWAVDataset(
#         path="/data/robbizorg/pqvd_gen_w_conditioning/speech_non_speech_timesteps_VCTK.json",
#         random_crop_size=NUM_SAMPLES,
#         sample_rate=SAMPLE_RATE,
#         transforms=AllTransform(
#             mono=True,
#         ),
#         reconstructive = False, # Make this true to just train a reconstructive model
#         identity_limit = 1 # Affects how often we learn identity mapping
#     )

#     print(f"Dataset length: {len(dataset)}")

#     dataloader = torch.utils.data.DataLoader(
#         dataset,
#         batch_size=BATCH_SIZE,
#         shuffle=True,
#         num_workers=16,
#         pin_memory=False,
#     )

#     vae_model = DSVAE(logger, **args).cuda()

#     if not os.path.exists(args['model_path']):
#         logger.warning("model not exist and we just create the new model......")
#     else:
#         logger.info("Model Exists")
#         logger.info("Model Path is " + args['model_path'])
#         vae_model.loadParameters(args['model_path'])
#     vae_model = torch.nn.DataParallel(vae_model, device_ids = cuda_ids, output_device=cuda_ids[0]) 
#     vae_model = vae_model.cuda()
#     vae_model.eval()
#     vae_model.module.eer = True

#     diff_model = create_model().to(device)
#     # audio_codec = build_model().to(device)
#     # audio_codec.latent_t_size = 157
#     # config, audio_codec, vocoder = load_neural_audio_codec('2021-05-19T22-16-54_vggsound_codebook', './logs', device)


#     # optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
#     optimizer = torch.optim.AdamW(params=list(diff_model.parameters()), lr=1e-4, betas= (0.95, 0.999), eps=1e-6, weight_decay=1e-3)

#     print(f"Number of parameters: {sum(p.numel() for p in diff_model.parameters() if p.requires_grad)}")

#     run_id = wandb.util.generate_id()
#     if args["run_id"] is not None:
#         run_id = args["run_id"]
#     print(f"Run ID: {run_id}")

#     wandb.init(project="audio-diffusion-no-condition", resume=args["resume"], id=run_id)

#     epoch = 0
#     step = 0

#     checkpoint_path = os.path.join(args["checkpoint"], args["run_id"])

#     if not os.path.exists(checkpoint_path):
#         os.makedirs(checkpoint_path)
#         os.makedirs(os.path.join(checkpoint_path, "mels"))
#         os.makedirs(os.path.join(checkpoint_path, "wavs"))


#     if wandb.run.resumed:
#         if os.path.exists(checkpoint_path):
#             checkpoint = torch.load(checkpoint_path)
#         else:
#             checkpoint = torch.load(wandb.restore(checkpoint_path))
#         diff_model.load_state_dict(checkpoint['model_state_dict'])
#         optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
#         epoch = checkpoint['epoch']
#         step = epoch * len(dataloader)
    
#     scaler = torch.cuda.amp.GradScaler()

#     diff_model.train()
#     while epoch < 101:
#         avg_loss = 0
#         avg_loss_step = 0
#         progress = tqdm(dataloader)
#         for i, (audio, target, embedding) in enumerate(progress):
#             optimizer.zero_grad()
#             audio = audio.to(device)
#             target = target.to(device)
#             embedding = embedding.to(device)

#             with torch.no_grad():
#                 embedding = embedding.float() # Make it float like the others

#                 speaker_embed_source, content_embed_source = vae_model(audio)
#                 speaker_embed_source = speaker_embed_source.unsqueeze(1).expand(-1, 157, -1)

#                 audio_embed = torch.cat((speaker_embed_source, content_embed_source), axis = -1)

#                 # zeroes = torch.zeros(16, 3, 128, dtype=audio_embed.dtype, device = audio_embed.device)
#                 # audio_embed = torch.cat((audio_embed, zeroes), dim=1)

#                 speaker_embed, content_embed = vae_model(target)
#                 speaker_embed = speaker_embed.unsqueeze(1).expand(-1, 157, -1)
                
#                 # in order to simulate paired data, do (naive) voice conversion first
#                 target_embed = torch.cat((speaker_embed, content_embed_source), axis = -1)
#                 # target_embed = torch.cat((target_embed, zeroes), dim = 1)
               
#             with torch.cuda.amp.autocast():
#                 loss = diff_model(audio_embed, target_embed, embedding=embedding)
#                 avg_loss += loss.item()
#                 avg_loss_step += 1
#             scaler.scale(loss).backward()
#             scaler.step(optimizer)
#             scaler.update()
#             progress.set_postfix(
#                 # loss=loss.item(),
#                 loss=avg_loss / avg_loss_step,
#                 epoch=epoch + i / len(dataloader),
#             )

#             if step % 500 == 0:
#             # if step % 1 == 0:
#                 # Turn noise into new audio sample with diffusion
#                 noise = torch.randn(1, 157, 128, device=device)


#                 with torch.cuda.amp.autocast():
#                     sample = diff_model.sample(audio_embed[0], noise, embedding=embedding[0][None, :], num_steps=200)

                

#                 # Save the melspecs
#                 audio_sub = torch.swapaxes(audio[0].unsqueeze(0), 1, 2)
#                 # target_sub = torch.swapaxes(target[0].unsqueeze(0), 1, 2) # This is the original target audio, not what we want
#                 target_sub = vae_model.module.share_decoder(target_embed).loc
#                 gen_mel = vae_model.module.share_decoder(sample).loc

#                 vae_model.module.draw_mel(audio_sub, mode=f"source_{step}", file_path = os.path.join(checkpoint_path, "mels"))
#                 vae_model.module.draw_mel(target_sub, mode=f"target_{step}", file_path = os.path.join(checkpoint_path, "mels"))
#                 vae_model.module.draw_mel(gen_mel, mode=f"gen_{step}", file_path = os.path.join(checkpoint_path, "mels"))

#                 vae_model.module.mel2wav(audio_sub, mode=f"source_{step}", task="vc", file_path = os.path.join(checkpoint_path, "wavs"))
#                 vae_model.module.mel2wav(target_sub, mode=f"target_{step}", task="vc", file_path = os.path.join(checkpoint_path, "wavs"))
#                 vae_model.module.mel2wav(gen_mel, mode=f"gen_{step}", task="vc", file_path = os.path.join(checkpoint_path, "wavs"))                

#                 # torchaudio.save(os.path.join(checkpoint_path, 'wavs', f'test_input_sound_{step}.wav'), torch.from_numpy(audio_codec.mel_spectrogram_to_waveform(audio_codec.decode_first_stage(audio[0].unsqueeze(0))))[0], SAMPLE_RATE)
#                 # torchaudio.save(os.path.join(checkpoint_path, 'wavs', f'test_generated_sound_{step}.wav'), torch.from_numpy(audio_codec.mel_spectrogram_to_waveform(audio_codec.decode_first_stage(sample[0].unsqueeze(0))))[0], SAMPLE_RATE)
#                 # torchaudio.save(os.path.join(checkpoint_path, 'wavs', f'test_target_sound_{step}.wav'), torch.from_numpy(audio_codec.mel_spectrogram_to_waveform(audio_codec.decode_first_stage(target[0].unsqueeze(0))))[0], SAMPLE_RATE)



#                 wandb.log({
#                     "step": step,
#                     "epoch": epoch + i / len(dataloader),
#                     "loss": avg_loss / avg_loss_step,
#                     "input_mel": wandb.Image(os.path.join(checkpoint_path, "mels", f"source_{step}_mel_0.png"), caption="Input Mel"),
#                     "target_mel": wandb.Image(os.path.join(checkpoint_path, "mels", f"target_{step}_mel_0.png"), caption="Target Mel"),
#                     "gen_mel": wandb.Image(os.path.join(checkpoint_path, "mels", f"gen_{step}_mel_0.png"), caption="Gen Mel"),
#                     "input_audio": wandb.Audio(os.path.join(checkpoint_path, 'wavs', f'source_{step}0.wav'), caption="Input audio", sample_rate=SAMPLE_RATE),
#                     "target_audio": wandb.Audio(os.path.join(checkpoint_path, 'wavs', f'target_{step}0.wav'), caption="Target audio", sample_rate=SAMPLE_RATE),
#                     "generated_audio": wandb.Audio(os.path.join(checkpoint_path, 'wavs', f'gen_{step}0.wav'), caption="Generated audio", sample_rate=SAMPLE_RATE)
#                 })
            
#             if step % 100 == 0:
#                 wandb.log({
#                     "step": step,
#                     "epoch": epoch + i / len(dataloader),
#                     "loss": avg_loss / avg_loss_step,
#                 })
#                 avg_loss = 0
#                 avg_loss_step = 0
            
#             step += 1

#         epoch += 1

#         if epoch % 100 == 0:
#             torch.save({
#                 'epoch': epoch,
#                 'model_state_dict': diff_model.state_dict(),
#                 'optimizer_state_dict': optimizer.state_dict(),
#             }, os.path.join(checkpoint_path, f"epoch-{epoch}.pt"))
#             wandb.save(checkpoint_path, base_path=args["checkpoint"])


# def parse_args():
#     parser = argparse.ArgumentParser()
#     parser.add_argument("--checkpoint", type=str, default='/data/robbizorg/pqvd_gen_w_dsvae/checkpoints/')
#     parser.add_argument("--resume", action="store_true")
#     parser.add_argument("--run_id", type=str, default='condition_ldm')

#     ## Params from DSVAE
#     parser.add_argument('--dataset',      type=str, default="VCTK", help='VCTK, LibriTTS')
#     parser.add_argument('--encoder', type=str, default='dsvae', help='dsvae. tdnn')
#     parser.add_argument('--vocoder', type=str, default='hifigan', help='wavenet, hifigan')
#     parser.add_argument('--save_tsne', dest='save_tsne', action='store_true', help='save_tsne')
#     parser.add_argument('--mel_tsne', dest='mel_tsne', action='store_true', help='mel_tsne')
#     parser.add_argument('--feature', type=str, default='mel_spec', help='stft, mel_spec, mfcc')
#     parser.add_argument('--model_path', type=str, default='/home/robbizorg/research/dsvae/save_models/dsvae/best699.pth')
#     # parser.add_argument('--model_path', type=str, default='/data/andreaguz/save_models/dsvae_003_03/best699.pth') # Using the fine-tuned dsvae
#     # parser.add_argument('--model_path', type=str, default='/data/andreaguz/save_models/dsvae_0001_0005/best.pth') # Using the fine-tuned dsvae
#     parser.add_argument('--save_path', type=str, default='save_models/dsvae')
#     parser.add_argument('--cuda_ids', type=str, default='0')
#     parser.add_argument('--tsne_mode', type=str, default='test')
#     parser.add_argument("--optimizer", type=str, default='adam', help='sgd, adam')
#     parser.add_argument("--path_vc_1", type=str, default='', help='')
#     parser.add_argument("--path_vc_2", type=str, default='', help='')
#     parser.add_argument('--max_frames', type=int, default=100, help='1frame~10ms')
#     parser.add_argument("--hop_size", type=int, default=256, help='hop_size')
#     parser.add_argument("--win_length", type=int, default=1024, help='win_length')
#     parser.add_argument("--spk_dim", type=int, default=64, help='spk_embed')
#     parser.add_argument("--ecapa_spk_dim", type=int, default=128, help='ecapa spk_embed')
#     parser.add_argument("--content_dim", type=int, default=64, help="content_embed")
#     parser.add_argument("--conformer_hidden_dim", type=int, default=256, help="content_embed")
#     parser.add_argument('--n_epochs', type=int, default=700, help='n_epochs')
#     parser.add_argument('--eval_epoch', type=int, default=5, help='eval_epoch')
#     parser.add_argument('--step_size', type=int, default=5, help='step_size')
#     parser.add_argument('--num_workers', type=int, default=16, help='num_workers')
#     parser.add_argument('--lr_decay_rate',type=float, default=0.95, help='lr_decay_rate')
#     parser.add_argument('--lr',type=float, default=3e-4, help='lr_rate')
#     # parser.add_argument('--klf_factor', type=float, default=3e-3, help='klf_factor')
#     # parser.add_argument('--klt_factor', type=float, default=5, help='klt_factor')
#     parser.add_argument('--klf_factor', type=float, default=3e-4, help='klf_factor') # Changed for the Fine-tuned Version
#     parser.add_argument('--klt_factor', type=float, default=3e-3, help='klt_factor')
#     parser.add_argument('--rec_factor', type=float, default=1, help='rec_factor')
#     parser.add_argument('--vq_factor', type=float, default=1000, help='vq_factor')
#     parser.add_argument('--zf_vq_factor', type=float, default=1000, help='vq_factor')
#     parser.add_argument('--klf_std', type=float, default=0.5, help='klf_std')
#     parser.add_argument('--rec_std', type=float, default=0.04, help='rec_std')
#     parser.add_argument('--clip', type=float, default=1, help='rec_std')
#     parser.add_argument('--phoneme_factor', type=float, default=1, help='phoneme_factor')
#     parser.add_argument('--r_vq_factor', type=float, default=10, help='r_vq_factor')
#     parser.add_argument('--compute_speaker_eer', dest='compute_speaker_eer', action='store_true', help='ASV EER')
#     parser.add_argument('--eval_phoneme', dest='eval_phoneme', action='store_true', help='ASV EER')
#     parser.add_argument('--num_eval', type=int, default=20, help='num of segments for eval')
#     parser.add_argument('--batch_size', type=int, default=256, help='batch_size')
#     parser.add_argument('--num_phonemes', type=int, default=100, help='num_phonemes')
#     parser.add_argument('--with_phoneme', dest='with_phoneme', action='store_true', help='')
#     parser.add_argument("--conversion", action='store_true', help='for conversion text')
#     parser.add_argument("--conversion2", action='store_true', help='for conversion text')
#     parser.add_argument("--conversion3", action='store_true', help='for conversion text')
#     parser.add_argument("--mel2npy", action='store_true', help='mel2npy')
#     parser.add_argument("--unconditional", action='store_true', help='unconditional')
#     parser.add_argument('--zt_norm_mean', action='store_true', help='instancenorm1d on zt prior and post')
#     parser.add_argument('--zf_norm_mean', action='store_true', help='instancenorm1d on zf prior and post')
#     parser.add_argument('--freeze_encoder', action='store_true', help='if or not to freeze encoder')
#     parser.add_argument('--freeze_decoder', action='store_true', help='if or not to freeze decoder')
#     parser.add_argument("--sample_rate",type=int, default=16000, help='16000 or 48000')
#     parser.add_argument('--noise_path', type=str, default='datasets/noise_list.scp', help='nosie invariant')
#     parser.add_argument('--wav_aug_train', action='store_true', help='with data augmentation')
#     parser.add_argument('--spec_aug_train', action='store_true', help='with data augmentation')
#     parser.add_argument('--noise_train', action='store_true', help='noise')
#     parser.add_argument('--triphn', action='store_true', help='with triphn')
#     parser.add_argument('--train_hifigan', action='store_true', help='train hifigan')
#     parser.add_argument("--prior_alignment", action='store_true', help='')
#     parser.add_argument("--zf_vq", action='store_true', help='')
#     parser.add_argument("--vq_prior_independent", action='store_true', help='')
#     parser.add_argument("--vq_prior_regressive", action='store_true', help='')
#     parser.add_argument("--vq_prior_pseudo", action='store_true', help='')
#     parser.add_argument("--vq_size_zt",type=int, default=200, help='')
#     parser.add_argument("--vq_size_zf",type=int, default=200, help='')
#     parser.add_argument("--ignore_index",type=int, default=0, help='')
#     parser.add_argument("--hidden_dim",type=int, default=256, help='')

#     parser.add_argument("--share_encoder", type=str, default='cnn', help='')
#     parser.add_argument("--share_decoder", type=str, default='cnn_lstm', help='cnn_lstm, cnn_transformer')
#     parser.add_argument("--zt_encoder", type=str, default='lstm', help='lstm, conformer_encoder, transformer_encoder')
#     parser.add_argument("--zf_encoder", type=str, default='lstm', help='lstm, transformer_encoder, ecapa_tdnn')
#     parser.add_argument("--zt_prior_model", type=str, default='lstm', help='lstm, vqvae, transformer')
#     parser.add_argument("--prior_signal", type=str, default='None', help='alignment_triphn, alignment_mono, melspec_pseudo, wavlm_pseudo, vq_embeds, vq_pseudo')
#     parser.add_argument("--multi_scale_add", action='store_true', help='')
#     parser.add_argument("--multi_scale_cat", action='store_true', help='')
#     parser.add_argument("--num_scales",type=int, default=1, help='')

#     parser.add_argument("--kmeans_num_clusters",type=int, default=50, help='')
#     parser.add_argument("--wavlm_dim", type=int, default=768, help='')

#     parser.add_argument("--ema_zt", action='store_true', help='')
#     parser.add_argument("--ema_zf", action='store_true', help='')

#     parser.add_argument("--r_vqvae", action='store_true', help='')
#     parser.add_argument("--masked_mel", action='store_true', help='')

#     parser.add_argument("--rec_noise", action='store_true', help='')
#     parser.add_argument("--rec_mask", action='store_true', help='')

#     parser.add_argument("--mel_classification", action='store_true', help='')
#     parser.add_argument("--test_script", action='store_true', help='')

#     parser.add_argument("--no_klt", action='store_true', help='')

#     parser.add_argument("--zt_prior_ce_r_vq", action='store_true', help='')
#     parser.add_argument('--zt_prior_ce_r_vq_factor', type=float, default=1000, help='factor')

#     parser.add_argument("--zt_post_ce_r_vq", action='store_true', help='')


#     parser.add_argument("--zt_prior_ce_kmeans", action='store_true', help='')
#     parser.add_argument('--zt_prior_ce_kmeans_factor', type=float, default=1000, help='factor')

#     parser.add_argument("--zt_post_ce_kmeans", action='store_true', help='')
#     parser.add_argument('--zt_post_ce_kmeans_factor', type=float, default=10, help='factor')


#     parser.add_argument("--zt_prior_ce_alignment", action='store_true', help='')
#     parser.add_argument('--zt_prior_ce_alignment_factor', type=float, default=1000, help='factor')

#     parser.add_argument("--prior_type", type=str, default='None', help='normal, condition, lm')
#     parser.add_argument("--prior_embedding", type=str, default='one-hot', help='one-hot, embedding')
#     parser.add_argument("--prior_mask", action='store_true', help='')

#     parser.add_argument("--wavlm", action='store_true', help='')
#     parser.add_argument("--wavlm_type", type=str, default='base', help='')


#     parser.add_argument("--tts_phn_wav_path", type=str, default='', help='')

#     parser.add_argument("--sr", type=str, default="16000", help='')

#     parser.add_argument("--text", type=str, default="your tts", help='')
#     parser.add_argument("--tts_align", action='store_true', help='')
#     parser.add_argument("--tts_wavlm", action='store_true', help='')
#     parser.add_argument("--tts", action='store_true', help='')
#     parser.add_argument("--tts_config", type=str, default="conf/LibriTTS/preprocess.yaml", help='')
#     parser.add_argument("--tts_target_wav_path", type=str, default='', help='')
#     parser.add_argument("--speed", type=float, default='1.0', help='')

#     parser.add_argument("--train_mapping", action='store_true', help='')
#     parser.add_argument("--mapping_encoder", type=str, default='lstm', help='')
#     parser.add_argument("--mapping_model_path", type=str, default='lstm', help='')
#     parser.add_argument("--mask_mapping", action='store_true', help='')
#     parser.add_argument("--mask_mapping_factor", type=float, default=1, help='')
#     parser.add_argument("--l1_mapping_factor", type=float, default=1, help='')
#     parser.add_argument("--mapping_ratio", type=float, default=1.0, help='')

#     parser.add_argument("--condition2", action='store_true', help='')

#     args = parser.parse_args()
#     return update_args(**vars(args))


# if __name__ == "__main__":
#     # torch.cuda.empty_cache()
#     main()