File size: 921 Bytes
4b7f523
 
cd15ef2
9565e59
 
 
 
0c74d5c
c57d6aa
 
9565e59
 
8710d3d
9565e59
 
 
 
 
 
cd15ef2
9565e59
 
 
 
 
78cf1fb
9565e59
 
d5a5459
9565e59
 
8710d3d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
__all__ = ['is_real', 'learn', 'virtual staging', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']
import pathlib

#|export
#fastai has to be available, i.e. fastai folder
from fastai.vision.all import *
import gradio as gr

st.title("Hot Dog? Or Not?")

def is_real(x): return x[0].isupper()

# Cell
learn = load_learner('model.pkl')

#|export
categories =('Virtual Staging','Real')

def classify_image(img):
    pred,idx,probs = learn.predict(img)
    return dict(zip(categories,map(float,probs)))

#*** We have to cast to float above because KAGGLE does not return number on the answer it returns tensors, and Gradio does not deal with numpy so we have to cast to float

#|export

image = gr.inputs.Image(shape=(192,192))
label = gr.outputs.Label()
examples = ['virtual.jpg','real.jpg']

intf = gr.Interface(fn=classify_image,inputs=image,outputs=label,examples=examples)
intf.launch(inline=False)