Spaces:
Sleeping
Sleeping
File size: 1,004 Bytes
181ceb6 0ecbfab 9565e59 5702361 0ecbfab 0b184b0 835ee48 0c74d5c e0ce9de 0b184b0 9565e59 b6384f9 0ce466b 9565e59 c93f364 9565e59 d5a5459 9565e59 4712590 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
__all__ = ['learn', 'classify_image', 'categories', 'classifier', 'virtual','image', 'label', 'examples', 'intf']
# Cell
from fastai.vision.all import *
import gradio as gr
import timm
import pickle
import torch
# with open('./model.pkl', 'rb') as f:
# model = pickle.load(f)
with open('model.pkl', 'rb') as f:
model = pickle.load(f)
def is_real(x): return x[0].isupper()
#|export
learn = load_learner('model.pkl')
#|export
categories =('Virtual Staging','Real')
def classify_image(img):
pred,idx,probs = learn.predict(img)
return dict(zip(categories,map(float,probs)))
#*** We have to cast to float above because KAGGLE does not return number on the answer it returns tensors, and Gradio does not deal with numpy so we have to cast to float
#|export
image = gr.inputs.Image(shape=(192,192))
label = gr.outputs.Label()
examples = ['virtual.jpg','real.jpg']
# Cell
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples,share=True)
intf.launch() |