|
import os
|
|
import cv2
|
|
import math
|
|
import time
|
|
import torch
|
|
import torch.distributed as dist
|
|
import numpy as np
|
|
import random
|
|
import argparse
|
|
|
|
from model.RIFE import Model
|
|
from dataset import *
|
|
from torch.utils.data import DataLoader, Dataset
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
device = torch.device("cuda")
|
|
|
|
log_path = 'train_log'
|
|
|
|
def get_learning_rate(step):
|
|
if step < 2000:
|
|
mul = step / 2000.
|
|
return 3e-4 * mul
|
|
else:
|
|
mul = np.cos((step - 2000) / (args.epoch * args.step_per_epoch - 2000.) * math.pi) * 0.5 + 0.5
|
|
return (3e-4 - 3e-6) * mul + 3e-6
|
|
|
|
def flow2rgb(flow_map_np):
|
|
h, w, _ = flow_map_np.shape
|
|
rgb_map = np.ones((h, w, 3)).astype(np.float32)
|
|
normalized_flow_map = flow_map_np / (np.abs(flow_map_np).max())
|
|
|
|
rgb_map[:, :, 0] += normalized_flow_map[:, :, 0]
|
|
rgb_map[:, :, 1] -= 0.5 * (normalized_flow_map[:, :, 0] + normalized_flow_map[:, :, 1])
|
|
rgb_map[:, :, 2] += normalized_flow_map[:, :, 1]
|
|
return rgb_map.clip(0, 1)
|
|
|
|
def train(model, local_rank):
|
|
if local_rank == 0:
|
|
writer = SummaryWriter('train')
|
|
writer_val = SummaryWriter('validate')
|
|
else:
|
|
writer = None
|
|
writer_val = None
|
|
step = 0
|
|
nr_eval = 0
|
|
dataset = VimeoDataset('train')
|
|
sampler = DistributedSampler(dataset)
|
|
train_data = DataLoader(dataset, batch_size=args.batch_size, num_workers=8, pin_memory=True, drop_last=True, sampler=sampler)
|
|
args.step_per_epoch = train_data.__len__()
|
|
dataset_val = VimeoDataset('validation')
|
|
val_data = DataLoader(dataset_val, batch_size=16, pin_memory=True, num_workers=8)
|
|
print('training...')
|
|
time_stamp = time.time()
|
|
for epoch in range(args.epoch):
|
|
sampler.set_epoch(epoch)
|
|
for i, data in enumerate(train_data):
|
|
data_time_interval = time.time() - time_stamp
|
|
time_stamp = time.time()
|
|
data_gpu, timestep = data
|
|
data_gpu = data_gpu.to(device, non_blocking=True) / 255.
|
|
timestep = timestep.to(device, non_blocking=True)
|
|
imgs = data_gpu[:, :6]
|
|
gt = data_gpu[:, 6:9]
|
|
learning_rate = get_learning_rate(step) * args.world_size / 4
|
|
pred, info = model.update(imgs, gt, learning_rate, training=True)
|
|
train_time_interval = time.time() - time_stamp
|
|
time_stamp = time.time()
|
|
if step % 200 == 1 and local_rank == 0:
|
|
writer.add_scalar('learning_rate', learning_rate, step)
|
|
writer.add_scalar('loss/l1', info['loss_l1'], step)
|
|
writer.add_scalar('loss/tea', info['loss_tea'], step)
|
|
writer.add_scalar('loss/distill', info['loss_distill'], step)
|
|
if step % 1000 == 1 and local_rank == 0:
|
|
gt = (gt.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
|
|
mask = (torch.cat((info['mask'], info['mask_tea']), 3).permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
|
|
pred = (pred.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
|
|
merged_img = (info['merged_tea'].permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
|
|
flow0 = info['flow'].permute(0, 2, 3, 1).detach().cpu().numpy()
|
|
flow1 = info['flow_tea'].permute(0, 2, 3, 1).detach().cpu().numpy()
|
|
for i in range(5):
|
|
imgs = np.concatenate((merged_img[i], pred[i], gt[i]), 1)[:, :, ::-1]
|
|
writer.add_image(str(i) + '/img', imgs, step, dataformats='HWC')
|
|
writer.add_image(str(i) + '/flow', np.concatenate((flow2rgb(flow0[i]), flow2rgb(flow1[i])), 1), step, dataformats='HWC')
|
|
writer.add_image(str(i) + '/mask', mask[i], step, dataformats='HWC')
|
|
writer.flush()
|
|
if local_rank == 0:
|
|
print('epoch:{} {}/{} time:{:.2f}+{:.2f} loss_l1:{:.4e}'.format(epoch, i, args.step_per_epoch, data_time_interval, train_time_interval, info['loss_l1']))
|
|
step += 1
|
|
nr_eval += 1
|
|
if nr_eval % 5 == 0:
|
|
evaluate(model, val_data, step, local_rank, writer_val)
|
|
model.save_model(log_path, local_rank)
|
|
dist.barrier()
|
|
|
|
def evaluate(model, val_data, nr_eval, local_rank, writer_val):
|
|
loss_l1_list = []
|
|
loss_distill_list = []
|
|
loss_tea_list = []
|
|
psnr_list = []
|
|
psnr_list_teacher = []
|
|
time_stamp = time.time()
|
|
for i, data in enumerate(val_data):
|
|
data_gpu, timestep = data
|
|
data_gpu = data_gpu.to(device, non_blocking=True) / 255.
|
|
imgs = data_gpu[:, :6]
|
|
gt = data_gpu[:, 6:9]
|
|
with torch.no_grad():
|
|
pred, info = model.update(imgs, gt, training=False)
|
|
merged_img = info['merged_tea']
|
|
loss_l1_list.append(info['loss_l1'].cpu().numpy())
|
|
loss_tea_list.append(info['loss_tea'].cpu().numpy())
|
|
loss_distill_list.append(info['loss_distill'].cpu().numpy())
|
|
for j in range(gt.shape[0]):
|
|
psnr = -10 * math.log10(torch.mean((gt[j] - pred[j]) * (gt[j] - pred[j])).cpu().data)
|
|
psnr_list.append(psnr)
|
|
psnr = -10 * math.log10(torch.mean((merged_img[j] - gt[j]) * (merged_img[j] - gt[j])).cpu().data)
|
|
psnr_list_teacher.append(psnr)
|
|
gt = (gt.permute(0, 2, 3, 1).cpu().numpy() * 255).astype('uint8')
|
|
pred = (pred.permute(0, 2, 3, 1).cpu().numpy() * 255).astype('uint8')
|
|
merged_img = (merged_img.permute(0, 2, 3, 1).cpu().numpy() * 255).astype('uint8')
|
|
flow0 = info['flow'].permute(0, 2, 3, 1).cpu().numpy()
|
|
flow1 = info['flow_tea'].permute(0, 2, 3, 1).cpu().numpy()
|
|
if i == 0 and local_rank == 0:
|
|
for j in range(10):
|
|
imgs = np.concatenate((merged_img[j], pred[j], gt[j]), 1)[:, :, ::-1]
|
|
writer_val.add_image(str(j) + '/img', imgs.copy(), nr_eval, dataformats='HWC')
|
|
writer_val.add_image(str(j) + '/flow', flow2rgb(flow0[j][:, :, ::-1]), nr_eval, dataformats='HWC')
|
|
|
|
eval_time_interval = time.time() - time_stamp
|
|
|
|
if local_rank != 0:
|
|
return
|
|
writer_val.add_scalar('psnr', np.array(psnr_list).mean(), nr_eval)
|
|
writer_val.add_scalar('psnr_teacher', np.array(psnr_list_teacher).mean(), nr_eval)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--epoch', default=300, type=int)
|
|
parser.add_argument('--batch_size', default=16, type=int, help='minibatch size')
|
|
parser.add_argument('--local_rank', default=0, type=int, help='local rank')
|
|
parser.add_argument('--world_size', default=4, type=int, help='world size')
|
|
args = parser.parse_args()
|
|
torch.distributed.init_process_group(backend="nccl", world_size=args.world_size)
|
|
torch.cuda.set_device(args.local_rank)
|
|
seed = 1234
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
torch.backends.cudnn.benchmark = True
|
|
model = Model(args.local_rank)
|
|
train(model, args.local_rank)
|
|
|
|
|