Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -5,15 +5,12 @@ import logging | |
| 5 | 
             
            import ast
         | 
| 6 | 
             
            import openai
         | 
| 7 | 
             
            import os
         | 
|  | |
| 8 | 
             
            import re
         | 
| 9 | 
            -
            from sklearn.feature_extraction.text import TfidfVectorizer
         | 
| 10 | 
            -
            from multiprocessing import Pool, cpu_count
         | 
| 11 |  | 
| 12 | 
             
            logging.basicConfig(filename='youtube_script_extractor.log', level=logging.DEBUG, 
         | 
| 13 | 
             
                                format='%(asctime)s - %(levelname)s - %(message)s')
         | 
| 14 |  | 
| 15 | 
            -
            openai.api_key = os.getenv("OPENAI_API_KEY")
         | 
| 16 | 
            -
             | 
| 17 | 
             
            def parse_api_response(response):
         | 
| 18 | 
             
                try:
         | 
| 19 | 
             
                    if isinstance(response, str):
         | 
| @@ -26,8 +23,30 @@ def parse_api_response(response): | |
| 26 | 
             
                except Exception as e:
         | 
| 27 | 
             
                    raise ValueError(f"API μλ΅ νμ± μ€ν¨: {str(e)}")
         | 
| 28 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 29 | 
             
            def get_youtube_script(url):
         | 
| 30 | 
             
                logging.info(f"μ€ν¬λ¦½νΈ μΆμΆ μμ: URL = {url}")
         | 
|  | |
| 31 | 
             
                client = Client("whispersound/YT_Ts_R")
         | 
| 32 |  | 
| 33 | 
             
                try:
         | 
| @@ -39,48 +58,31 @@ def get_youtube_script(url): | |
| 39 |  | 
| 40 | 
             
                    title = parsed_result["data"][0]["title"]
         | 
| 41 | 
             
                    transcription_text = parsed_result["data"][0]["transcriptionAsText"]
         | 
| 42 | 
            -
                     | 
| 43 | 
            -
             | 
| 44 | 
            -
                     | 
| 45 | 
            -
                     | 
| 46 | 
            -
                    
         | 
| 47 | 
            -
                    logging.info("μ€ν¬λ¦½νΈ μΆμΆ λ° μ²λ¦¬ μλ£")
         | 
| 48 | 
            -
                    return title, transcription_text, processed_sections
         | 
| 49 |  | 
| 50 | 
             
                except Exception as e:
         | 
| 51 | 
             
                    error_msg = f"μ€ν¬λ¦½νΈ μΆμΆ μ€ μ€λ₯ λ°μ: {str(e)}"
         | 
| 52 | 
             
                    logging.exception(error_msg)
         | 
| 53 | 
             
                    return "", "", []
         | 
| 54 |  | 
| 55 | 
            -
             | 
| 56 | 
            -
                vectorizer = TfidfVectorizer().fit([text1, text2])
         | 
| 57 | 
            -
                vectors = vectorizer.transform([text1, text2])
         | 
| 58 | 
            -
                similarity = (vectors[0] * vectors[1].T).A[0][0]
         | 
| 59 | 
            -
                return similarity > threshold
         | 
| 60 |  | 
| 61 | 
            -
            def  | 
| 62 | 
            -
                 | 
| 63 | 
            -
             | 
| 64 | 
            -
             | 
| 65 | 
            -
             | 
| 66 | 
            -
             | 
| 67 | 
            -
             | 
| 68 | 
            -
             | 
| 69 | 
            -
             | 
| 70 | 
            -
             | 
| 71 | 
            -
             | 
| 72 | 
            -
             | 
| 73 | 
            -
             | 
| 74 | 
            -
                    else:
         | 
| 75 | 
            -
                        if is_same_topic_tfidf(current_section['text'], section['text']):
         | 
| 76 | 
            -
                            current_section['end_time'] = section['end_time']
         | 
| 77 | 
            -
                            current_section['text'] += ' ' + section['text']
         | 
| 78 | 
            -
                        else:
         | 
| 79 | 
            -
                            merged_sections.append(current_section)
         | 
| 80 | 
            -
                            current_section = section.copy()
         | 
| 81 | 
            -
                
         | 
| 82 | 
            -
                merged_sections.append(current_section)
         | 
| 83 | 
            -
                return merged_sections
         | 
| 84 |  | 
| 85 | 
             
            def summarize_section(section_text):
         | 
| 86 | 
             
                prompt = f"""
         | 
| @@ -92,79 +94,114 @@ def summarize_section(section_text): | |
| 92 | 
             
            μΉμ
 λ΄μ©:
         | 
| 93 | 
             
            {section_text}
         | 
| 94 | 
             
            """
         | 
| 95 | 
            -
                 | 
| 96 | 
            -
                    response = openai.ChatCompletion.create(
         | 
| 97 | 
            -
                        model="gpt-4o-mini",
         | 
| 98 | 
            -
                        messages=[{"role": "user", "content": prompt}],
         | 
| 99 | 
            -
                        max_tokens=150,
         | 
| 100 | 
            -
                        temperature=0.3,
         | 
| 101 | 
            -
                        top_p=0.9
         | 
| 102 | 
            -
                    )
         | 
| 103 | 
            -
                    return response['choices'][0]['message']['content']
         | 
| 104 | 
            -
                except Exception as e:
         | 
| 105 | 
            -
                    logging.exception("μμ½ μμ± μ€ μ€λ₯ λ°μ")
         | 
| 106 | 
            -
                    return "μμ½μ μμ±νλ λμ μ€λ₯κ° λ°μνμ΅λλ€."
         | 
| 107 | 
            -
             | 
| 108 | 
            -
            def process_section(section):
         | 
| 109 | 
            -
                summary = summarize_section(section['text'])
         | 
| 110 | 
            -
                return {
         | 
| 111 | 
            -
                    'start_time': section['start_time'],
         | 
| 112 | 
            -
                    'end_time': section['end_time'],
         | 
| 113 | 
            -
                    'summary': summary
         | 
| 114 | 
            -
                }
         | 
| 115 | 
            -
             | 
| 116 | 
            -
            def process_merged_sections_parallel(merged_sections):
         | 
| 117 | 
            -
                with Pool(processes=cpu_count()) as pool:
         | 
| 118 | 
            -
                    return pool.map(process_section, merged_sections)
         | 
| 119 |  | 
| 120 | 
             
            def format_time(seconds):
         | 
| 121 | 
             
                minutes, seconds = divmod(seconds, 60)
         | 
| 122 | 
             
                hours, minutes = divmod(minutes, 60)
         | 
| 123 | 
             
                return f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}"
         | 
| 124 |  | 
| 125 | 
            -
            def generate_timeline_summary( | 
| 126 | 
             
                timeline_summary = ""
         | 
| 127 | 
            -
                for i, section in enumerate( | 
| 128 | 
             
                    start_time = format_time(section['start_time'])
         | 
| 129 | 
            -
                     | 
| 130 | 
            -
                    timeline_summary += f"{start_time}  | 
| 131 | 
             
                return timeline_summary
         | 
| 132 |  | 
| 133 | 
            -
            def  | 
| 134 | 
            -
                 | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
| 140 | 
            -
             | 
| 141 | 
            -
             | 
| 142 | 
            -
             | 
| 143 | 
            -
             | 
| 144 | 
            -
             | 
| 145 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 146 |  | 
| 147 | 
             
            with gr.Blocks() as demo:
         | 
| 148 | 
             
                gr.Markdown("## YouTube μ€ν¬λ¦½νΈ μΆμΆ λ° μμ½ λꡬ")
         | 
| 149 |  | 
| 150 | 
             
                youtube_url_input = gr.Textbox(label="YouTube URL μ
λ ₯")
         | 
| 151 | 
             
                analyze_button = gr.Button("λΆμνκΈ°")
         | 
| 152 | 
            -
                 | 
|  | |
|  | |
| 153 |  | 
| 154 | 
            -
                cached_data = gr.State({"url": "", "title": "", "script": "", " | 
| 155 |  | 
| 156 | 
            -
                def  | 
| 157 | 
             
                    if url == cache["url"]:
         | 
| 158 | 
            -
                        return  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 159 |  | 
| 160 | 
            -
             | 
| 161 | 
            -
                     | 
| 162 | 
            -
             | 
|  | |
| 163 |  | 
| 164 | 
             
                analyze_button.click(
         | 
| 165 | 
             
                    analyze, 
         | 
| 166 | 
             
                    inputs=[youtube_url_input, cached_data], 
         | 
| 167 | 
            -
                    outputs=[ | 
|  | |
|  | |
|  | |
|  | |
| 168 | 
             
                )
         | 
| 169 |  | 
| 170 | 
             
            demo.launch(share=True)
         | 
|  | |
| 5 | 
             
            import ast
         | 
| 6 | 
             
            import openai
         | 
| 7 | 
             
            import os
         | 
| 8 | 
            +
            import random
         | 
| 9 | 
             
            import re
         | 
|  | |
|  | |
| 10 |  | 
| 11 | 
             
            logging.basicConfig(filename='youtube_script_extractor.log', level=logging.DEBUG, 
         | 
| 12 | 
             
                                format='%(asctime)s - %(levelname)s - %(message)s')
         | 
| 13 |  | 
|  | |
|  | |
| 14 | 
             
            def parse_api_response(response):
         | 
| 15 | 
             
                try:
         | 
| 16 | 
             
                    if isinstance(response, str):
         | 
|  | |
| 23 | 
             
                except Exception as e:
         | 
| 24 | 
             
                    raise ValueError(f"API μλ΅ νμ± μ€ν¨: {str(e)}")
         | 
| 25 |  | 
| 26 | 
            +
            def split_sentences(text):
         | 
| 27 | 
            +
                sentences = re.split(r"(λλ€|μμ|ꡬλ|ν΄μ|κ΅°μ|κ² μ΄μ|μμ€|ν΄λΌ|μμ|μμ|λ°μ|λμ|μΈμ|μ΄μ|κ²μ|ꡬμ|κ³ μ|λμ|νμ£ )(?![\w])", text)
         | 
| 28 | 
            +
                combined_sentences = []
         | 
| 29 | 
            +
                current_sentence = ""
         | 
| 30 | 
            +
                for i in range(0, len(sentences), 2):
         | 
| 31 | 
            +
                    if i + 1 < len(sentences):
         | 
| 32 | 
            +
                        sentence = sentences[i] + sentences[i + 1]
         | 
| 33 | 
            +
                    else:
         | 
| 34 | 
            +
                        sentence = sentences[i]
         | 
| 35 | 
            +
                    if len(current_sentence) + len(sentence) > 100:
         | 
| 36 | 
            +
                        combined_sentences.append(current_sentence.strip())
         | 
| 37 | 
            +
                        current_sentence = sentence.strip()
         | 
| 38 | 
            +
                    else:
         | 
| 39 | 
            +
                        current_sentence += sentence
         | 
| 40 | 
            +
                    if sentence.endswith(('.', '?', '!')):
         | 
| 41 | 
            +
                        combined_sentences.append(current_sentence.strip())
         | 
| 42 | 
            +
                        current_sentence = ""
         | 
| 43 | 
            +
                if current_sentence:
         | 
| 44 | 
            +
                    combined_sentences.append(current_sentence.strip())
         | 
| 45 | 
            +
                return combined_sentences
         | 
| 46 | 
            +
             | 
| 47 | 
             
            def get_youtube_script(url):
         | 
| 48 | 
             
                logging.info(f"μ€ν¬λ¦½νΈ μΆμΆ μμ: URL = {url}")
         | 
| 49 | 
            +
             | 
| 50 | 
             
                client = Client("whispersound/YT_Ts_R")
         | 
| 51 |  | 
| 52 | 
             
                try:
         | 
|  | |
| 58 |  | 
| 59 | 
             
                    title = parsed_result["data"][0]["title"]
         | 
| 60 | 
             
                    transcription_text = parsed_result["data"][0]["transcriptionAsText"]
         | 
| 61 | 
            +
                    sections = parsed_result["data"][0]["sections"]
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    logging.info("μ€ν¬λ¦½νΈ μΆμΆ μλ£")
         | 
| 64 | 
            +
                    return title, transcription_text, sections
         | 
|  | |
|  | |
|  | |
| 65 |  | 
| 66 | 
             
                except Exception as e:
         | 
| 67 | 
             
                    error_msg = f"μ€ν¬λ¦½νΈ μΆμΆ μ€ μ€λ₯ λ°μ: {str(e)}"
         | 
| 68 | 
             
                    logging.exception(error_msg)
         | 
| 69 | 
             
                    return "", "", []
         | 
| 70 |  | 
| 71 | 
            +
            openai.api_key = os.getenv("OPENAI_API_KEY")
         | 
|  | |
|  | |
|  | |
|  | |
| 72 |  | 
| 73 | 
            +
            def call_api(prompt, max_tokens, temperature, top_p):
         | 
| 74 | 
            +
                try:
         | 
| 75 | 
            +
                    response = openai.ChatCompletion.create(
         | 
| 76 | 
            +
                        model="gpt-4o-mini",
         | 
| 77 | 
            +
                        messages=[{"role": "user", "content": prompt}],
         | 
| 78 | 
            +
                        max_tokens=max_tokens,
         | 
| 79 | 
            +
                        temperature=temperature,
         | 
| 80 | 
            +
                        top_p=top_p
         | 
| 81 | 
            +
                    )
         | 
| 82 | 
            +
                    return response['choices'][0]['message']['content']
         | 
| 83 | 
            +
                except Exception as e:
         | 
| 84 | 
            +
                    logging.exception("LLM API νΈμΆ μ€ μ€λ₯ λ°μ")
         | 
| 85 | 
            +
                    return "μμ½μ μμ±νλ λμ μ€λ₯κ° λ°μνμ΅λλ€. λμ€μ λ€μ μλν΄ μ£ΌμΈμ."
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 86 |  | 
| 87 | 
             
            def summarize_section(section_text):
         | 
| 88 | 
             
                prompt = f"""
         | 
|  | |
| 94 | 
             
            μΉμ
 λ΄μ©:
         | 
| 95 | 
             
            {section_text}
         | 
| 96 | 
             
            """
         | 
| 97 | 
            +
                return call_api(prompt, max_tokens=150, temperature=0.3, top_p=0.9)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 98 |  | 
| 99 | 
             
            def format_time(seconds):
         | 
| 100 | 
             
                minutes, seconds = divmod(seconds, 60)
         | 
| 101 | 
             
                hours, minutes = divmod(minutes, 60)
         | 
| 102 | 
             
                return f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}"
         | 
| 103 |  | 
| 104 | 
            +
            def generate_timeline_summary(sections):
         | 
| 105 | 
             
                timeline_summary = ""
         | 
| 106 | 
            +
                for i, section in enumerate(sections, 1):
         | 
| 107 | 
             
                    start_time = format_time(section['start_time'])
         | 
| 108 | 
            +
                    summary = summarize_section(section['text'])
         | 
| 109 | 
            +
                    timeline_summary += f"{start_time} {i}. {summary}\n\n"
         | 
| 110 | 
             
                return timeline_summary
         | 
| 111 |  | 
| 112 | 
            +
            def summarize_text(text):
         | 
| 113 | 
            +
                prompt = f"""
         | 
| 114 | 
            +
            1. λ€μ μ£Όμ΄μ§λ μ νλΈ λλ³Έμ ν΅μ¬ μ£Όμ μ λͺ¨λ  μ£Όμ λ΄μ©μ μμΈνκ² μμ½νλΌ
         | 
| 115 | 
            +
            2. λ°λμ νκΈλ‘ μμ±νλΌ
         | 
| 116 | 
            +
            3. μμ½λ¬Έλ§μΌλ‘λ μμμ μ§μ  μμ²ν κ²κ³Ό λμΌν μμ€μΌλ‘ λ΄μ©μ μ΄ν΄ν  μ μλλ‘ μμΈν μμ±
         | 
| 117 | 
            +
            4. κΈμ λ무 μμΆνκ±°λ ν¨μΆνμ§ λ§κ³ , μ€μν λ΄μ©κ³Ό μΈλΆμ¬νμ λͺ¨λ ν¬ν¨
         | 
| 118 | 
            +
            5. λ°λμ λλ³Έμ νλ¦κ³Ό λ
Όλ¦¬ ꡬ쑰λ₯Ό μ μ§
         | 
| 119 | 
            +
            6. λ°λμ μκ° μμλ μ¬κ±΄μ μ κ° κ³Όμ μ λͺ
ννκ² λ°μ
         | 
| 120 | 
            +
            7. λ±μ₯μΈλ¬Ό, μ₯μ, μ¬κ±΄ λ± μ€μν μμλ₯Ό μ ννκ² μμ±
         | 
| 121 | 
            +
            8. λλ³Έμμ μ λ¬νλ κ°μ μ΄λ λΆμκΈ°λ ν¬ν¨
         | 
| 122 | 
            +
            9. λ°λμ κΈ°μ μ  μ©μ΄λ μ λ¬Έ μ©μ΄κ° μμ κ²½μ°, μ΄λ₯Ό μ ννκ² μ¬μ©
         | 
| 123 | 
            +
            10. λλ³Έμ λͺ©μ μ΄λ μλλ₯Ό νμ
νκ³ , μ΄λ₯Ό μμ½μ λ°λμ λ°μ
         | 
| 124 | 
            +
            11. μ μ²΄κΈμ 보고 
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            ---
         | 
| 127 | 
            +
             | 
| 128 | 
            +
            μ΄ ν둬ννΈκ° λμμ΄ λμκΈΈ λ°λλλ€.    
         | 
| 129 | 
            +
                \n\n
         | 
| 130 | 
            +
                {text}"""
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                try:
         | 
| 133 | 
            +
                    return call_api(prompt, max_tokens=10000, temperature=0.3, top_p=0.9)
         | 
| 134 | 
            +
                except Exception as e:
         | 
| 135 | 
            +
                    logging.exception("μμ½ μμ± μ€ μ€λ₯ λ°μ")
         | 
| 136 | 
            +
                    return "μμ½μ μμ±νλ λμ μ€λ₯κ° λ°μνμ΅λλ€. λμ€μ λ€μ μλν΄ μ£ΌμΈμ."
         | 
| 137 |  | 
| 138 | 
             
            with gr.Blocks() as demo:
         | 
| 139 | 
             
                gr.Markdown("## YouTube μ€ν¬λ¦½νΈ μΆμΆ λ° μμ½ λꡬ")
         | 
| 140 |  | 
| 141 | 
             
                youtube_url_input = gr.Textbox(label="YouTube URL μ
λ ₯")
         | 
| 142 | 
             
                analyze_button = gr.Button("λΆμνκΈ°")
         | 
| 143 | 
            +
                script_output = gr.HTML(label="μ€ν¬λ¦½νΈ")
         | 
| 144 | 
            +
                timeline_output = gr.HTML(label="νμλΌμΈ μμ½")
         | 
| 145 | 
            +
                summary_output = gr.HTML(label="μ μ²΄ μμ½")
         | 
| 146 |  | 
| 147 | 
            +
                cached_data = gr.State({"url": "", "title": "", "script": "", "sections": []})
         | 
| 148 |  | 
| 149 | 
            +
                def extract_and_cache(url, cache):
         | 
| 150 | 
             
                    if url == cache["url"]:
         | 
| 151 | 
            +
                        return cache["title"], cache["script"], cache["sections"], cache
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    title, script, sections = get_youtube_script(url)
         | 
| 154 | 
            +
                    new_cache = {"url": url, "title": title, "script": script, "sections": sections}
         | 
| 155 | 
            +
                    return title, script, sections, new_cache
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                def display_script(title, script):
         | 
| 158 | 
            +
                    formatted_script = "\n".join(split_sentences(script))
         | 
| 159 | 
            +
                    script_html = f"""<h2 style='font-size:24px;'>{title}</h2>
         | 
| 160 | 
            +
                    <details>
         | 
| 161 | 
            +
                        <summary><h3>μλ¬Έ μ€ν¬λ¦½νΈ (ν΄λ¦νμ¬ νΌμΉκΈ°)</h3></summary>
         | 
| 162 | 
            +
                        <div style="white-space: pre-wrap;">{formatted_script}</div>
         | 
| 163 | 
            +
                    </details>"""
         | 
| 164 | 
            +
                    return script_html
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                def display_timeline(sections):
         | 
| 167 | 
            +
                    timeline_summary = generate_timeline_summary(sections)
         | 
| 168 | 
            +
                    timeline_html = f"""
         | 
| 169 | 
            +
                    <h3>νμλΌμΈ μμ½:</h3>
         | 
| 170 | 
            +
                    <div style="white-space: pre-wrap; max-height: 400px; overflow-y: auto; border: 1px solid #ccc; padding: 10px;">
         | 
| 171 | 
            +
                        {timeline_summary}
         | 
| 172 | 
            +
                    </div>
         | 
| 173 | 
            +
                    """
         | 
| 174 | 
            +
                    return timeline_html
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                def generate_summary(script):
         | 
| 177 | 
            +
                    summary = summarize_text(script)
         | 
| 178 | 
            +
                    summary_html = f"""
         | 
| 179 | 
            +
                    <h3>μ μ²΄ μμ½:</h3>
         | 
| 180 | 
            +
                    <div style="white-space: pre-wrap; max-height: 400px; overflow-y: auto; border: 1px solid #ccc; padding: 10px;">
         | 
| 181 | 
            +
                        {summary}
         | 
| 182 | 
            +
                    </div>
         | 
| 183 | 
            +
                    """
         | 
| 184 | 
            +
                    return summary_html
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                def analyze(url, cache):
         | 
| 187 | 
            +
                    title, script, sections, new_cache = extract_and_cache(url, cache)
         | 
| 188 | 
            +
                    script_html = display_script(title, script)
         | 
| 189 | 
            +
                    timeline_html = display_timeline(sections)
         | 
| 190 | 
            +
                    return script_html, timeline_html, new_cache
         | 
| 191 |  | 
| 192 | 
            +
                def update_summary(cache):
         | 
| 193 | 
            +
                    if not cache["script"]:
         | 
| 194 | 
            +
                        return "μ€ν¬λ¦½νΈκ° μμ΅λλ€. λ¨Όμ  YouTube URLμ μ
λ ₯νκ³  λΆμμ μ€νν΄μ£ΌμΈμ."
         | 
| 195 | 
            +
                    return generate_summary(cache["script"])
         | 
| 196 |  | 
| 197 | 
             
                analyze_button.click(
         | 
| 198 | 
             
                    analyze, 
         | 
| 199 | 
             
                    inputs=[youtube_url_input, cached_data], 
         | 
| 200 | 
            +
                    outputs=[script_output, timeline_output, cached_data]
         | 
| 201 | 
            +
                ).then(
         | 
| 202 | 
            +
                    update_summary,
         | 
| 203 | 
            +
                    inputs=[cached_data],
         | 
| 204 | 
            +
                    outputs=summary_output
         | 
| 205 | 
             
                )
         | 
| 206 |  | 
| 207 | 
             
            demo.launch(share=True)
         | 
