Spaces:
Running
Running
File size: 6,060 Bytes
073d3e8 4a45930 073d3e8 4a45930 073d3e8 4a45930 073d3e8 4a45930 073d3e8 4a45930 073d3e8 4a45930 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
from gradio_client import Client
import json
import logging
import ast
import openai
import os
import random
import re
# λ‘κΉ
μ€μ
logging.basicConfig(filename='youtube_script_extractor.log', level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s')
def parse_api_response(response):
try:
if isinstance(response, str):
response = ast.literal_eval(response)
if isinstance(response, list) and len(response) > 0:
response = response[0]
if not isinstance(response, dict):
raise ValueError(f"μμμΉ λͺ»ν μλ΅ νμμ
λλ€. λ°μ λ°μ΄ν° νμ
: {type(response)}")
return response
except Exception as e:
raise ValueError(f"API μλ΅ νμ± μ€ν¨: {str(e)}")
# λ¬Έμ₯ κ΅¬λΆ ν¨μ (νκ΅μ΄)
def split_sentences(text):
sentences = re.split(r"(λλ€|μμ|ꡬλ|ν΄μ|κ΅°μ|κ² μ΄μ|μμ€|ν΄λΌ|μμ|μμ|λ°μ|λμ|μΈμ|μ΄μ|κ²μ|ꡬμ|κ³ μ|λμ|νμ£ )(?![\w])", text)
combined_sentences = []
current_sentence = ""
for i in range(0, len(sentences), 2):
if i + 1 < len(sentences):
sentence = sentences[i] + sentences[i + 1]
else:
sentence = sentences[i]
if len(current_sentence) + len(sentence) > 100: # 100μλ₯Ό μ΄κ³Όν κ²½μ°
combined_sentences.append(current_sentence.strip())
current_sentence = sentence.strip()
else:
current_sentence += sentence
if sentence.endswith(('.', '?', '!')):
combined_sentences.append(current_sentence.strip())
current_sentence = ""
if current_sentence:
combined_sentences.append(current_sentence.strip())
return combined_sentences
def get_youtube_script(url):
logging.info(f"μ€ν¬λ¦½νΈ μΆμΆ μμ: URL = {url}")
# μλν¬μΈνΈλ₯Ό μλ‘μ΄ κ²μΌλ‘ λ³κ²½
client = Client("whispersound/YT_Ts_R")
try:
logging.debug("API νΈμΆ μμ")
result = client.predict(youtube_url=url, api_name="/predict")
logging.debug("API νΈμΆ μλ£")
# μλ΅ νμ±
parsed_result = parse_api_response(result)
title = parsed_result["data"][0]["title"]
transcription_text = parsed_result["data"][0]["transcriptionAsText"]
logging.info("μ€ν¬λ¦½νΈ μΆμΆ μλ£")
return title, transcription_text
except Exception as e:
error_msg = f"μ€ν¬λ¦½νΈ μΆμΆ μ€ μ€λ₯ λ°μ: {str(e)}"
logging.exception(error_msg)
return "", ""
# OpenAI API ν€ μ€μ
openai.api_key = os.getenv("OPENAI_API_KEY")
# LLM API νΈμΆ ν¨μ
def call_api(prompt, max_tokens, temperature, top_p):
try:
response = openai.ChatCompletion.create(
model="gpt-4o-mini", # λͺ¨λΈμ gpt-4o-miniλ‘ λ³κ²½
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p
)
return response['choices'][0]['message']['content']
except Exception as e:
logging.exception("LLM API νΈμΆ μ€ μ€λ₯ λ°μ")
return "μμ½μ μμ±νλ λμ μ€λ₯κ° λ°μνμ΅λλ€. λμ€μ λ€μ μλν΄ μ£ΌμΈμ."
# ν
μ€νΈ μμ½ ν¨μ
def summarize_text(text):
prompt = text # ν둬ννΈλ₯Ό μλ³Έ ν
μ€νΈλ‘ μ€μ νμ¬ self-discover κ°λ₯νλλ‘ ν¨
try:
return call_api(prompt, max_tokens=2000, temperature=0.3, top_p=0.9)
except Exception as e:
logging.exception("μμ½ μμ± μ€ μ€λ₯ λ°μ")
return "μμ½μ μμ±νλ λμ μ€λ₯κ° λ°μνμ΅λλ€. λμ€μ λ€μ μλν΄ μ£ΌμΈμ."
# Gradio μΈν°νμ΄μ€ μ€μ
with gr.Blocks() as demo:
gr.Markdown("## YouTube μ€ν¬λ¦½νΈ μΆμΆ λ° μμ½ λꡬ")
youtube_url_input = gr.Textbox(label="YouTube URL μ
λ ₯")
analyze_button = gr.Button("λΆμνκΈ°")
script_output = gr.HTML(label="μ€ν¬λ¦½νΈ")
summary_output = gr.HTML(label="μμ½")
# μΊμλ₯Ό μν μν λ³μ
cached_data = gr.State({"url": "", "title": "", "script": ""})
def extract_and_cache(url, cache):
if url == cache["url"]:
return cache["title"], cache["script"], cache
title, script = get_youtube_script(url)
new_cache = {"url": url, "title": title, "script": script}
return title, script, new_cache
def display_script(title, script):
formatted_script = "\n".join(split_sentences(script))
script_html = f"""<h2 style='font-size:24px;'>{title}</h2>
<details>
<summary><h3>μλ¬Έ μ€ν¬λ¦½νΈ (ν΄λ¦νμ¬ νΌμΉκΈ°)</h3></summary>
<div style="white-space: pre-wrap;">{formatted_script}</div>
</details>"""
return script_html
def generate_summary(script):
summary = summarize_text(script)
# μμ½ κ²°κ³Όλ₯Ό μ νμνκΈ° μν΄ div νκ·Έμ CSS μ€νμΌ μ μ©
summary_html = f"""
<h3>μμ½:</h3>
<div style="white-space: pre-wrap; max-height: 400px; overflow-y: auto; border: 1px solid #ccc; padding: 10px;">
{summary}
</div>
"""
return summary_html
def analyze(url, cache):
title, script, new_cache = extract_and_cache(url, cache)
script_html = display_script(title, script)
return script_html, new_cache
def update_summary(cache):
if not cache["script"]:
return "μ€ν¬λ¦½νΈκ° μμ΅λλ€. λ¨Όμ YouTube URLμ μ
λ ₯νκ³ λΆμμ μ€νν΄μ£ΌμΈμ."
return generate_summary(cache["script"])
# λ²νΌ ν΄λ¦ μ μ€ν¬λ¦½νΈ μΆμΆ
analyze_button.click(
analyze,
inputs=[youtube_url_input, cached_data],
outputs=[script_output, cached_data]
).then(
update_summary,
inputs=[cached_data],
outputs=summary_output
)
# μΈν°νμ΄μ€ μ€ν
demo.launch(share=True) |