import gradio as gr from huggingface_hub import InferenceClient MODELS = { "Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta", "DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct", "Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct", "Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1", "Cohere Command R+": "CohereForAI/c4ai-command-r-plus", } def get_client(model_name): return InferenceClient(MODELS[model_name]) def respond( message, chat_history, model_name, max_tokens, temperature, top_p, system_message, ): client = get_client(model_name) messages = [{"role": "system", "content": system_message}] for human, assistant in chat_history: messages.append({"role": "user", "content": human}) messages.append({"role": "assistant", "content": assistant}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response with gr.Blocks() as demo: gr.Markdown("# Advanced AI Chatbot") gr.Markdown("Chat with different language models and customize your experience!") with gr.Row(): with gr.Column(scale=1): model_name = gr.Radio( choices=list(MODELS.keys()), label="Language Model", value="Zephyr 7B Beta" ) max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens") temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") system_message = gr.Textbox( value="You are a friendly and helpful AI assistant.", label="System Message", lines=3 ) with gr.Column(scale=2): chatbot = gr.Chatbot() msg = gr.Textbox(label="Your message") clear = gr.Button("Clear") msg.submit(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot) clear.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.launch()