import gradio as gr from huggingface_hub import InferenceClient def respond(message, history, system_message, max_tokens, temperature, top_p, selected_model): client = InferenceClient(selected_model) messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response models = { "deepseek-ai/DeepSeek-Coder-V2-Instruct": "DeepSeek-Coder-V2-Instruct", "CohereForAI/c4ai-command-r-plus": "Cohere Command-R Plus", "meta-llama/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct", "bartowski/DeepSeek-V2-Chat-0628-GGUF": "DeepSeek-V2-Chat-0628-GGUF", "google/gemma-7b": "Gemma-7b", "openai-community/gpt2": "gpt2" } demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="시스템 메시지"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="최대 새 토큰 수"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="온도"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (핵 샘플링)"), gr.Radio(list(models.keys()), value=list(models.keys())[0], label="언어 모델 선택", info="사용할 언어 모델을 선택하세요") ], ) if __name__ == "__main__": demo.launch()