Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ from huggingface_hub import InferenceClient
|
|
| 3 |
import os
|
| 4 |
from threading import Event
|
| 5 |
|
| 6 |
-
# Hugging Face API Token을 환경 변수로부터 가져옴
|
| 7 |
hf_token = os.getenv("HF_TOKEN")
|
| 8 |
stop_event = Event()
|
| 9 |
|
|
@@ -15,18 +14,18 @@ models = {
|
|
| 15 |
"CohereForAI/c4ai-command-r-plus": "Cohere Command-R Plus"
|
| 16 |
}
|
| 17 |
|
| 18 |
-
# Inference
|
| 19 |
def get_client(model):
|
| 20 |
return InferenceClient(model=model, token=hf_token)
|
| 21 |
|
| 22 |
-
#
|
| 23 |
def respond(message, system_message, max_tokens, temperature, top_p, selected_model):
|
| 24 |
stop_event.clear()
|
| 25 |
client = get_client(selected_model)
|
| 26 |
|
| 27 |
-
# 프롬프트 설정
|
| 28 |
messages = [
|
| 29 |
-
{"role": "system", "content": system_message
|
| 30 |
{"role": "user", "content": message}
|
| 31 |
]
|
| 32 |
|
|
@@ -34,7 +33,7 @@ def respond(message, system_message, max_tokens, temperature, top_p, selected_mo
|
|
| 34 |
response = ""
|
| 35 |
total_tokens_used = 0 # 사용된 토큰 수 추적
|
| 36 |
|
| 37 |
-
# 모델에서 응답을
|
| 38 |
for chunk in client.text_generation(
|
| 39 |
prompt="\n".join([f"{m['role']}: {m['content']}" for m in messages]),
|
| 40 |
max_new_tokens=max_tokens,
|
|
@@ -58,65 +57,31 @@ def get_last_response(chatbot):
|
|
| 58 |
return chatbot[-1][1]
|
| 59 |
return None
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
class PromptHistory:
|
| 63 |
-
def __init__(self):
|
| 64 |
-
self.history = []
|
| 65 |
-
|
| 66 |
-
def add_entry(self, prompt, response, model, settings):
|
| 67 |
-
self.history.append({
|
| 68 |
-
"prompt": prompt,
|
| 69 |
-
"response": response,
|
| 70 |
-
"model": model,
|
| 71 |
-
"settings": settings
|
| 72 |
-
})
|
| 73 |
-
|
| 74 |
-
def get_history(self):
|
| 75 |
-
return self.history
|
| 76 |
-
|
| 77 |
-
# 히스토리 객체 생성
|
| 78 |
-
prompt_history = PromptHistory()
|
| 79 |
-
|
| 80 |
-
# Gradio 인터페이스 함수 정의
|
| 81 |
def gradio_interface(message, system_message, max_tokens, temperature, top_p, selected_model):
|
| 82 |
result = None
|
| 83 |
for output in respond(message, system_message, max_tokens, temperature, top_p, selected_model):
|
| 84 |
result = output
|
| 85 |
-
|
| 86 |
-
# 프롬프트와 결과를 히스토리에 추가
|
| 87 |
-
prompt_history.add_entry(
|
| 88 |
-
message,
|
| 89 |
-
result[0][1], # 모델 응답
|
| 90 |
-
selected_model,
|
| 91 |
-
{"max_tokens": max_tokens, "temperature": temperature, "top_p": top_p}
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
return result
|
| 95 |
|
| 96 |
-
# 히스토리 확인용 함수
|
| 97 |
-
def view_history():
|
| 98 |
-
return prompt_history.get_history()
|
| 99 |
-
|
| 100 |
-
# Gradio UI 구성
|
| 101 |
with gr.Blocks() as demo:
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
# 버튼을 눌러 응답을 받는 함수 연결
|
| 114 |
-
submit_button =
|
| 115 |
-
submit_button.click(gradio_interface, inputs=[message, system_message, max_tokens, temperature, top_p, selected_model], outputs=[response_output, token_usage])
|
| 116 |
-
|
| 117 |
-
# 히스토리 보기 기능 연결
|
| 118 |
-
history_output = gr.Textbox(label="히스토리", interactive=False)
|
| 119 |
-
history_button.click(view_history, outputs=history_output)
|
| 120 |
|
| 121 |
# UI 실행
|
| 122 |
demo.launch()
|
|
|
|
| 3 |
import os
|
| 4 |
from threading import Event
|
| 5 |
|
|
|
|
| 6 |
hf_token = os.getenv("HF_TOKEN")
|
| 7 |
stop_event = Event()
|
| 8 |
|
|
|
|
| 14 |
"CohereForAI/c4ai-command-r-plus": "Cohere Command-R Plus"
|
| 15 |
}
|
| 16 |
|
| 17 |
+
# Inference 클라이언트 반환
|
| 18 |
def get_client(model):
|
| 19 |
return InferenceClient(model=model, token=hf_token)
|
| 20 |
|
| 21 |
+
# 응답 생성 함수
|
| 22 |
def respond(message, system_message, max_tokens, temperature, top_p, selected_model):
|
| 23 |
stop_event.clear()
|
| 24 |
client = get_client(selected_model)
|
| 25 |
|
| 26 |
+
# 프롬프트 설정 - 시스템 메시지를 자유롭게 설정 가능
|
| 27 |
messages = [
|
| 28 |
+
{"role": "system", "content": system_message},
|
| 29 |
{"role": "user", "content": message}
|
| 30 |
]
|
| 31 |
|
|
|
|
| 33 |
response = ""
|
| 34 |
total_tokens_used = 0 # 사용된 토큰 수 추적
|
| 35 |
|
| 36 |
+
# 모델에서 응답을 스트리밍
|
| 37 |
for chunk in client.text_generation(
|
| 38 |
prompt="\n".join([f"{m['role']}: {m['content']}" for m in messages]),
|
| 39 |
max_new_tokens=max_tokens,
|
|
|
|
| 57 |
return chatbot[-1][1]
|
| 58 |
return None
|
| 59 |
|
| 60 |
+
# Gradio UI 구성
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
def gradio_interface(message, system_message, max_tokens, temperature, top_p, selected_model):
|
| 62 |
result = None
|
| 63 |
for output in respond(message, system_message, max_tokens, temperature, top_p, selected_model):
|
| 64 |
result = output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
return result
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
with gr.Blocks() as demo:
|
| 68 |
+
with gr.Row():
|
| 69 |
+
with gr.Column():
|
| 70 |
+
selected_model = gr.Dropdown(choices=list(models.keys()), value="deepseek-ai/DeepSeek-Coder-V2-Instruct", label="모델 선택")
|
| 71 |
+
system_message = gr.Textbox(label="시스템 메시지", value="이 메시지를 기준으로 대화 흐름을 설정합니다.")
|
| 72 |
+
message = gr.Textbox(label="사용자 메시지")
|
| 73 |
+
|
| 74 |
+
max_tokens = gr.Slider(minimum=10, maximum=512, value=128, label="최대 토큰 수")
|
| 75 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
|
| 76 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top-p")
|
| 77 |
+
|
| 78 |
+
submit_button = gr.Button("응답 생성")
|
| 79 |
+
with gr.Column():
|
| 80 |
+
chatbot = gr.Chatbot()
|
| 81 |
+
token_usage = gr.Textbox(label="토큰 사용량", interactive=False)
|
| 82 |
|
| 83 |
# 버튼을 눌러 응답을 받는 함수 연결
|
| 84 |
+
submit_button.click(gradio_interface, inputs=[message, system_message, max_tokens, temperature, top_p, selected_model], outputs=[chatbot, token_usage])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
# UI 실행
|
| 87 |
demo.launch()
|