AIRider's picture
Update app.py
cfab2e6 verified
raw
history blame
1.96 kB
import gradio as gr
from huggingface_hub import InferenceClient
MODELS = {
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
"DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct",
"Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"Cohere Command R+": "CohereForAI/c4ai-command-r-plus",
}
def get_client(model_name):
return InferenceClient(MODELS[model_name])
def respond(
message,
history: list[tuple[str, str]],
model_name,
system_message,
max_tokens,
temperature,
top_p,
):
client = get_client(model_name)
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown(choices=list(MODELS.keys()), label="Language Model", value="Zephyr 7B Beta"),
gr.Textbox(value="You are a friendly and helpful AI assistant.", label="System Message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
title="Advanced AI Chatbot",
description="Chat with different language models and customize your experience!",
)
if __name__ == "__main__":
demo.launch()