AIRider's picture
Update app.py
30bf3f3 verified
raw
history blame
4.52 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
from threading import Event
# Hugging Face API Token을 환경 변수로부터 가져옴
hf_token = os.getenv("HF_TOKEN")
stop_event = Event()
# 모델 목록 정의
models = {
"deepseek-ai/DeepSeek-Coder-V2-Instruct": "(한국회사)DeepSeek-Coder-V2-Instruct",
"meta-llama/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
"mistralai/Mixtral-8x7B-Instruct-v0.1": "Mixtral-8x7B-Instruct-v0.1",
"CohereForAI/c4ai-command-r-plus": "Cohere Command-R Plus"
}
# Inference 클라이언트를 반환하는 함수
def get_client(model):
return InferenceClient(model=model, token=hf_token)
# 메시지 응답 생성 함수
def respond(message, system_message, max_tokens, temperature, top_p, selected_model):
stop_event.clear()
client = get_client(selected_model)
# 프롬프트 설정
messages = [
{"role": "system", "content": system_message + "\n주어진 입력에만 정확히 답변하세요. 추가 질문을 만들거나 입력을 확장하지 마세요."},
{"role": "user", "content": message}
]
try:
response = ""
total_tokens_used = 0 # 사용된 토큰 수 추적
# 모델에서 응답을 청크 단위로 스트리밍
for chunk in client.text_generation(
prompt="\n".join([f"{m['role']}: {m['content']}" for m in messages]),
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True
):
if stop_event.is_set():
break
if chunk:
response += chunk
total_tokens_used += len(chunk.split()) # 청크당 사용된 토큰 수 추산
yield [(message, response, f"사용된 토큰 수: {total_tokens_used}/{max_tokens}")]
except Exception as e:
yield [(message, f"오류 발생: {str(e)}", "에러 처리 필요")]
# 이전 응답을 확인하는 함수
def get_last_response(chatbot):
if chatbot and len(chatbot) > 0:
return chatbot[-1][1]
return None
# 프롬프트 비교 및 최적화를 위한 히스토리 기록 추가
class PromptHistory:
def __init__(self):
self.history = []
def add_entry(self, prompt, response, model, settings):
self.history.append({
"prompt": prompt,
"response": response,
"model": model,
"settings": settings
})
def get_history(self):
return self.history
# 히스토리 객체 생성
prompt_history = PromptHistory()
# Gradio 인터페이스 함수 정의
def gradio_interface(message, system_message, max_tokens, temperature, top_p, selected_model):
result = None
for output in respond(message, system_message, max_tokens, temperature, top_p, selected_model):
result = output
# 프롬프트와 결과를 히스토리에 추가
prompt_history.add_entry(
message,
result[0][1], # 모델 응답
selected_model,
{"max_tokens": max_tokens, "temperature": temperature, "top_p": top_p}
)
return result
# 히스토리 확인용 함수
def view_history():
return prompt_history.get_history()
# Gradio UI 구성
with gr.Blocks() as demo:
selected_model = gr.Dropdown(choices=list(models.keys()), label="모델 선택")
message = gr.Textbox(label="사용자 메시지")
system_message = gr.Textbox(label="시스템 메시지", value="이 메시지를 기준으로 대화 흐름을 설정합니다.")
max_tokens = gr.Slider(minimum=10, maximum=512, value=128, label="최대 토큰 수")
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top-p")
response_output = gr.Textbox(label="모델 응답")
token_usage = gr.Textbox(label="토큰 사용량")
history_button = gr.Button("히스토리 보기")
# 버튼을 눌러 응답을 받는 함수 연결
submit_button = gr.Button("응답 생성")
submit_button.click(gradio_interface, inputs=[message, system_message, max_tokens, temperature, top_p, selected_model], outputs=[response_output, token_usage])
# 히스토리 보기 기능 연결
history_output = gr.Textbox(label="히스토리", interactive=False)
history_button.click(view_history, outputs=history_output)
# UI 실행
demo.launch()