File size: 4,847 Bytes
9c880cb
 
5bdf9aa
b4dff1d
5bdf9aa
 
b4dff1d
 
32957d4
 
 
 
 
 
 
 
 
 
871126f
32957d4
871126f
32957d4
871126f
 
32957d4
 
a5db718
871126f
 
 
 
a5db718
 
b4dff1d
32957d4
b4dff1d
 
871126f
 
 
 
 
d6bc4b8
871126f
5bdf9aa
d6bc4b8
9c880cb
32957d4
 
9a9e197
32957d4
 
01c8295
32957d4
c1e9c0c
 
 
 
01c8295
32957d4
 
9a9e197
32957d4
 
1e06dbb
6c72519
32957d4
 
6c72519
93b41fc
32957d4
 
960780c
b4dff1d
93b41fc
 
 
6c72519
 
 
32957d4
6c72519
c04ac55
 
 
6c72519
 
32957d4
 
 
 
 
 
 
9c880cb
 
5bdf9aa
 
960780c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
from huggingface_hub import InferenceClient
import os
from threading import Event

hf_token = os.getenv("HF_TOKEN")
stop_event = Event()

models = {
    "deepseek-ai/DeepSeek-Coder-V2-Instruct": "(한국회사)DeepSeek-Coder-V2-Instruct",
    "meta-llama/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
    "mistralai/Mixtral-8x7B-Instruct-v0.1": "Mixtral-8x7B-Instruct-v0.1",
    "CohereForAI/c4ai-command-r-plus": "Cohere Command-R Plus"
}

def get_client(model):
    return InferenceClient(model=model, token=hf_token)

def respond(message, history, system_message, max_tokens, temperature, top_p, selected_model):
    stop_event.clear()
    client = InferenceClient(model=selected_model, token=hf_token)
    
    messages = [{"role": "system", "content": system_message + "\n사용자의 입력에만 직접적으로 답변하세요. 추가 질문을 생성하거나 사용자의 입력을 확장하지 마세요."}]
    messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for h in history for i, m in enumerate(h) if m])
    messages.append({"role": "user", "content": message})
    
    try:
        response = ""
        for chunk in client.text_generation(
            prompt="\n".join([f"{m['role']}: {m['content']}" for m in messages]),
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            stream=True
        ):
            if stop_event.is_set():
                break
            if chunk:
                response += chunk
                # 응답의 시작 부분에서 사용자 입력의 반복을 제거
                if response.startswith(message):
                    response = response[len(message):].lstrip()
                yield history + [(message, response)]
        
    except Exception as e:
        yield history + [(message, f"오류 발생: {str(e)}")]

def continue_writing(message, chat_history, system_message, max_tokens, temperature, top_p, selected_model):
    if not chat_history:
        return "대화 내역이 없습니다."
    last_user_message = chat_history[-1][0]
    last_assistant_message = chat_history[-1][1]
    prompt = f"이전 대화를 계속 이어서 작성해주세요. 이전 응답: {last_assistant_message}"
    return respond(prompt, chat_history, system_message, max_tokens, temperature, top_p, selected_model)

def stop_generation():
    stop_event.set()
    return "생성이 중단되었습니다."

def regenerate(chat_history, system_message, max_tokens, temperature, top_p, selected_model):
    if not chat_history:
        return "대화 내역이 없습니다."
    last_user_message = chat_history[-1][0]
    return respond(last_user_message, chat_history[:-1], system_message, max_tokens, temperature, top_p, selected_model)

with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    msg = gr.Textbox(label="메시지 입력", placeholder="메시지를 입력하세요. Enter로 전송, Shift+Enter로 줄바꿈")

    with gr.Row():
        send = gr.Button("전송")
        continue_btn = gr.Button("계속 작성")
        regenerate_btn = gr.Button("🔄 재생성")
        stop = gr.Button("🛑 생성 중단")
        clear = gr.Button("🗑️ 대화 내역 지우기")

    with gr.Accordion("추가 설정", open=True):
        system_message = gr.Textbox(
            value="너는 나의 최고의 비서이다.\n내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.\n반드시 한글로 답변할것.",
            label="시스템 메시지",
            lines=5
        )
        max_tokens = gr.Slider(minimum=1, maximum=2000, value=500, step=100, label="최대 새 토큰 수")
        temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="온도")
        top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.90, step=0.05, label="Top-p (핵 샘플링)")
        model = gr.Radio(list(models.keys()), value=list(models.keys())[0], label="언어 모델 선택", info="사용할 언어 모델을 선택하세요")

    # Event handlers
    msg.submit(respond, [msg, chatbot, system_message, max_tokens, temperature, top_p, model], [chatbot])
    send.click(respond, [msg, chatbot, system_message, max_tokens, temperature, top_p, model], [chatbot])
    continue_btn.click(continue_writing, [msg, chatbot, system_message, max_tokens, temperature, top_p, model], [chatbot])
    regenerate_btn.click(regenerate, [chatbot, system_message, max_tokens, temperature, top_p, model], [chatbot])
    stop.click(stop_generation, outputs=[msg])
    clear.click(lambda: None, outputs=[chatbot])

if __name__ == "__main__":
    if not hf_token:
        print("경고: HF_TOKEN 환경 변수가 설정되지 않았습니다. 일부 모델에 접근할 수 없을 수 있습니다.")
    demo.launch()