Spaces:
Sleeping
Sleeping
File size: 4,445 Bytes
9c880cb 5bdf9aa b4dff1d 5bdf9aa b4dff1d 32957d4 87dda7a 32957d4 8ae421b 32957d4 87dda7a 32957d4 a5db718 871126f a5db718 b4dff1d 32957d4 b4dff1d 871126f 87dda7a 871126f 5bdf9aa 87dda7a 844d195 8ae421b 1e06dbb 8ae421b 87dda7a 8ae421b 87dda7a 8ae421b 87dda7a 8ae421b 87dda7a 6c72519 32957d4 87dda7a 6c72519 93b41fc 32957d4 b4dff1d 93b41fc 6c72519 32957d4 6c72519 c04ac55 6c72519 32957d4 87dda7a b16cf8b 8ae421b 87dda7a 32957d4 9c880cb 5bdf9aa 960780c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
from threading import Event
hf_token = os.getenv("HF_TOKEN")
stop_event = Event()
models = {
"deepseek-ai/DeepSeek-Coder-V2-Instruct": "(한국회사)DeepSeek-Coder-V2-Instruct",
"meta-llama/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
"mistralai/Mixtral-8x7B-Instruct-v0.1": "Mixtral-8x7B-Instruct-v0.1",
"CohereForAI/c4ai-command-r-plus": "Cohere Command-R Plus"
}
def get_client(model):
return InferenceClient(model=model, token=hf_token)
def respond(message, system_message, max_tokens, temperature, top_p, selected_model):
stop_event.clear()
client = get_client(selected_model)
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": message}
]
try:
response = ""
for chunk in client.text_generation(
prompt="\n".join([f"{m['role']}: {m['content']}" for m in messages]),
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True
):
if stop_event.is_set():
break
if chunk:
response += chunk
yield [(message, response)]
except Exception as e:
yield [(message, f"오류 발생: {str(e)}")]
def get_last_response(chatbot):
if chatbot and len(chatbot) > 0:
return chatbot[-1][1]
return ""
def continue_writing(chatbot, system_message, max_tokens, temperature, top_p, selected_model):
last_response = get_last_response(chatbot)
stop_event.clear()
client = get_client(selected_model)
prompt = f"이전 응답을 이어서 작성해주세요. 이전 응답: {last_response}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": prompt}
]
try:
response = last_response
for chunk in client.text_generation(
prompt="\n".join([f"{m['role']}: {m['content']}" for m in messages]),
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True
):
if stop_event.is_set():
break
if chunk:
response += chunk
yield chatbot + [("계속 작성", response)]
except Exception as e:
yield chatbot + [("계속 작성", f"오류 발생: {str(e)}")]
def stop_generation():
stop_event.set()
return "생성이 중단되었습니다."
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox(label="메시지 입력")
with gr.Row():
send = gr.Button("전송")
continue_btn = gr.Button("계속 작성")
stop = gr.Button("🛑 생성 중단")
clear = gr.Button("🗑️ 대화 내역 지우기")
with gr.Accordion("추가 설정", open=True):
system_message = gr.Textbox(
value="너는 나의 최고의 비서이다.\n내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.\n반드시 한글로 답변할것.",
label="시스템 메시지",
lines=5
)
max_tokens = gr.Slider(minimum=1, maximum=2000, value=500, step=100, label="최대 새 토큰 수")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="온도")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.90, step=0.05, label="Top-p (핵 샘플링)")
model = gr.Radio(list(models.keys()), value=list(models.keys())[0], label="언어 모델 선택", info="사용할 언어 모델을 선택하세요")
# Event handlers
send.click(respond, inputs=[msg, system_message, max_tokens, temperature, top_p, model], outputs=[chatbot])
msg.submit(respond, inputs=[msg, system_message, max_tokens, temperature, top_p, model], outputs=[chatbot])
continue_btn.click(continue_writing,
inputs=[chatbot, system_message, max_tokens, temperature, top_p, model],
outputs=[chatbot])
stop.click(stop_generation, outputs=[msg])
clear.click(lambda: None, outputs=[chatbot])
if __name__ == "__main__":
if not hf_token:
print("경고: HF_TOKEN 환경 변수가 설정되지 않았습니다. 일부 모델에 접근할 수 없을 수 있습니다.")
demo.launch() |