Spaces:
Sleeping
Sleeping
File size: 3,411 Bytes
9c880cb f9c7426 5bdf9aa cfab2e6 32957d4 cfab2e6 f9c7426 d345b65 cfab2e6 a41f6e0 cfab2e6 a41f6e0 cfab2e6 fcc0bb3 4d79cf7 fcc0bb3 f9c7426 c35470f 4d79cf7 c35470f cfab2e6 f9c7426 c14f735 f9c7426 a41f6e0 4d79cf7 a41f6e0 4d79cf7 a41f6e0 4d79cf7 f9c7426 4d79cf7 a41f6e0 f9c7426 cfab2e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
MODELS = {
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
"DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct",
"Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"Cohere Command R+": "CohereForAI/c4ai-command-r-plus",
}
def get_client(model_name):
model_id = MODELS[model_name]
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN environment variable is required")
return InferenceClient(model_id, token=hf_token)
def respond(
message,
chat_history,
model_name,
max_tokens,
temperature,
top_p,
system_message,
):
try:
client = get_client(model_name)
except ValueError as e:
chat_history.append((message, str(e)))
return chat_history
messages = [{"role": "system", "content": system_message}]
for human, assistant in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
try:
stream = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
)
partial_message = ""
for response in stream:
if response.choices[0].delta.content is not None:
partial_message += response.choices[0].delta.content
chat_history = chat_history + [(message, partial_message)]
yield chat_history
except Exception as e:
error_message = f"An error occurred: {str(e)}"
chat_history.append((message, error_message))
yield chat_history
def clear_conversation():
return []
with gr.Blocks() as demo:
gr.Markdown("# Prompting AI Chatbot")
gr.Markdown("언어모델별 프롬프트 테스트 챗봇입니다.")
with gr.Row():
with gr.Column(scale=1):
model_name = gr.Radio(
choices=list(MODELS.keys()),
label="Language Model",
value="Zephyr 7B Beta"
)
max_tokens = gr.Slider(minimum=1, maximum=2000, value=500, step=100, label="Max Tokens")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
system_message = gr.Textbox(
value="You are a friendly and helpful AI assistant.",
label="System Message",
lines=3
)
with gr.Column(scale=2):
chatbot = gr.Chatbot()
msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
submit_button = gr.Button("전송")
clear_button = gr.Button("대화 내역 지우기")
msg.submit(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot)
submit_button.click(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot)
clear_button.click(clear_conversation, outputs=chatbot, queue=False)
if __name__ == "__main__":
demo.launch() |