import gradio as gr import requests from PIL import Image import io from typing import Any, Tuple import os class Client: def __init__(self, server_url: str): self.server_url = server_url def send_request(self, task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any, str]: response = requests.post( self.server_url, json={ "task_name": task_name, "model_name": model_name, "text": text, "normalization_type": normalization_type }, timeout=60 ) if response.status_code == 200: response_data = response.json() img_data = bytes.fromhex(response_data["image"]) log_info = response_data["log"] img = Image.open(io.BytesIO(img_data)) return img, log_info else: return "Error, please retry", "Error: Could not get response from server" client = Client(f"http://{os.environ['SERVER']}/predict") def get_layerwise_nonlinearity(task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any, str]: return client.send_request(task_name, model_name, text, normalization_type) with gr.Blocks() as demo: with gr.Row(): model_selector = gr.Dropdown( choices=[ "facebook/opt-1.3b", "TheBloke/Llama-2-7B-fp16" # "facebook/opt-2.7b", # "microsoft/Phi-3-mini-128k-instruct" ], value="facebook/opt-1.3b", label="Select Model" ) task_selector = gr.Dropdown( choices=[ "Layer wise non-linearity", "Next-token prediction from intermediate representations", "Contextualization measurement", "Layerwise predictions (logit lens)", "Tokenwise loss without i-th layer" ], value="Layer wise non-linearity", label="Select Mode" ) normalization_selector = gr.Dropdown( choices=["global", "token-wise"], #, "sentence-wise"], value="token-wise", label="Select Normalization" ) with gr.Column(): text_message = gr.Textbox(label="Enter your request:", value="I love to live my life") submit = gr.Button("Submit") box_for_plot = gr.Image(label="Visualization", type="pil") log_output = gr.Textbox(label="Log Output", lines=10, interactive=False, value="") def update_output(task_name: str, model_name: str, text: str, normalization_type: str, existing_log: str) -> Tuple[Any, str]: img, new_log = get_layerwise_nonlinearity(task_name, model_name, text, normalization_type) combined_log = existing_log + "---\n" + new_log + "\n" return img, combined_log def set_default(task_name: str) -> str: if task_name == "Layer wise non-linearity": return "token-wise" if task_name == "Next-token prediction from intermediate representations": return "token-wise" if task_name == "Contextualization measurement": return "global" if task_name == "Layerwise predictions (logit lens)": return "global" if task_name == "Tokenwise loss without i-th layer": return "token-wise" def check_normalization(task_name: str, normalization_name) -> Tuple[str, str]: if task_name == "Contextualization measurement" and normalization_name == "token-wise": return ("global", "\nALERT: Cannot apply token-wise normalization to one sentence, setting global normalization\n") return (normalization_name, "") task_selector.select(set_default, [task_selector], [normalization_selector]) normalization_selector.select(check_normalization, [task_selector, normalization_selector], [normalization_selector, log_output]) submit.click( fn=update_output, inputs=[task_selector, model_selector, text_message, normalization_selector, log_output], outputs=[box_for_plot, log_output] ) if __name__ == "__main__": demo.launch(share=True, server_port=7860, server_name="0.0.0.0")