import gradio as gr import requests from PIL import Image import io from typing import Any, Tuple import os class Client: def __init__(self, server_url: str): self.server_url = server_url def send_request(self, task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any, str]: response = requests.post( self.server_url, json={ "task_name": task_name, "model_name": model_name, "text": text, "normalization_type": normalization_type }, timeout=60 ) if response.status_code == 200: response_data = response.json() img_data = bytes.fromhex(response_data["image"]) img = Image.open(io.BytesIO(img_data)) return img, "OK" else: return "Error, please retry", "Error: Could not get response from server" client = Client(f"http://{os.environ['SERVER']}/predict") def get_layerwise_nonlinearity(task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any, str]: return client.send_request(task_name, model_name, text, normalization_type) def update_output(task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any]: img, _ = get_layerwise_nonlinearity(task_name, model_name, text, normalization_type) return img def set_default(task_name: str) -> str: if task_name in ["Layer wise non-linearity", "Next-token prediction from intermediate representations", "Tokenwise loss without i-th layer"]: return "token-wise" return "global" def check_normalization(task_name: str, normalization_name) -> Tuple[str]: if task_name == "Contextualization measurement" and normalization_name == "token-wise": return "global" return normalization_name def update_description(task_name: str) -> str: descriptions = { "Layer wise non-linearity": "Non-linearity per layer: shows how complex each layer's transformation is. Red = more nonlinear.", "Next-token prediction from intermediate representations": "Layerwise token prediction: when does the model start guessing correctly?", "Contextualization measurement": "Context stored in each token: how well can the model reconstruct the previous context?", "Layerwise predictions (logit lens)": "Logit lens: what does each layer believe the next token should be?", "Tokenwise loss without i-th layer": "Layer ablation: how much does performance drop if a layer is removed?" } return descriptions.get(task_name, "ℹ️ No description available.") with gr.Blocks() as demo: # gr.Markdown("# 🔬 LLM-Microscope — Understanding Token Representations in Transformers") gr.Markdown("# 🔬 LLM-Microscope — A Look Inside the Black Box") gr.Markdown("Select a model, analysis mode, and input — then peek inside the black box of an LLM to see which layers matter most, which tokens carry the most memory, and how predictions evolve.") with gr.Row(): model_selector = gr.Dropdown( choices=[ "facebook/opt-1.3b", "TheBloke/Llama-2-7B-fp16", "Qwen/Qwen3-8B" ], value="facebook/opt-1.3b", label="Select Model" ) task_selector = gr.Dropdown( choices=[ "Layer wise non-linearity", "Next-token prediction from intermediate representations", "Contextualization measurement", "Layerwise predictions (logit lens)", "Tokenwise loss without i-th layer" ], value="Layer wise non-linearity", label="Select Mode" ) normalization_selector = gr.Dropdown( choices=["global", "token-wise"], value="token-wise", label="Select Normalization" ) task_description = gr.Markdown("ℹ️ Choose a mode to see what it does.") with gr.Column(): text_message = gr.Textbox(label="Enter your input text:", value="I love to live my life") submit = gr.Button("Submit") box_for_plot = gr.Image(label="Visualization", type="pil") with gr.Accordion("📘 More Info and Explanation", open=False): gr.Markdown(""" This heatmap shows **how each token is processed** across layers of a language model. Here's how to read it: - **Rows**: layers of the model (bottom = deeper) - **Columns**: input tokens - **Colors**: intensity of effect (depends on the selected metric) --- ### Metrics explained: - `Layer wise non-linearity`: how nonlinear the transformation is at each layer (red = more nonlinear). - `Next-token prediction from intermediate representations`: shows which layers begin to make good predictions. - `Contextualization measurement`: tokens with more context info get lower scores (green = more context). - `Layerwise predictions (logit lens)`: tracks how the model’s guesses evolve at each layer. - `Tokenwise loss without i-th layer`: shows how much each token depends on a specific layer. Red means performance drops if we skip this layer. Use this tool to **peek inside the black box** — it reveals which layers matter most, which tokens carry the most memory, and how LLMs evolve their predictions. --- You can also use `llm-microscope` as a Python library to run these analyses on **your own models and data**. Just install it with: `pip install llm-microscope` More details provided in [GitHub repo](https://github.com/AIRI-Institute/LLM-Microscope). """) task_selector.change(fn=update_description, inputs=[task_selector], outputs=[task_description]) task_selector.select(set_default, [task_selector], [normalization_selector]) normalization_selector.select(check_normalization, [task_selector, normalization_selector], [normalization_selector]) submit.click( fn=update_output, inputs=[task_selector, model_selector, text_message, normalization_selector], outputs=[box_for_plot] ) if __name__ == "__main__": demo.launch(share=True, server_port=7860, server_name="0.0.0.0")