matveymih commited on
Commit
6c7eb2d
Β·
verified Β·
1 Parent(s): 86ce226

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -28
app.py CHANGED
@@ -34,6 +34,29 @@ client = Client(f"http://{os.environ['SERVER']}/predict")
34
  def get_layerwise_nonlinearity(task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any, str]:
35
  return client.send_request(task_name, model_name, text, normalization_type)
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  with gr.Blocks() as demo:
39
  gr.Markdown("# πŸ”¬ LLM-Microscope β€” Understanding Token Representations in Transformers")
@@ -65,22 +88,24 @@ with gr.Blocks() as demo:
65
  label="Select Normalization"
66
  )
67
 
 
 
68
  with gr.Column():
69
  text_message = gr.Textbox(label="Enter your input text:", value="I love to live my life")
70
  submit = gr.Button("Submit")
71
  box_for_plot = gr.Image(label="Visualization", type="pil")
72
 
73
- # πŸ’¬ Explanation below the visualization
74
- explanation_text = gr.Markdown("""
75
- ### πŸ“˜ Legend and Interpretation
76
-
77
  This heatmap shows **how each token is processed** across layers of a language model. Here's how to read it:
78
 
79
  - **Rows**: layers of the model (bottom = deeper)
80
  - **Columns**: input tokens
81
  - **Colors**: intensity of effect (depends on the selected metric)
82
 
83
- **Metrics explained:**
 
 
84
 
85
  - `Layer wise non-linearity`: how nonlinear the transformation is at each layer (red = more nonlinear).
86
  - `Next-token prediction from intermediate representations`: shows which layers begin to make good predictions.
@@ -89,29 +114,16 @@ This heatmap shows **how each token is processed** across layers of a language m
89
  - `Tokenwise loss without i-th layer`: shows how much each token depends on a specific layer. Red means performance drops if we skip this layer.
90
 
91
  Use this tool to **peek inside the black box** β€” it reveals which layers matter most, which tokens carry the most memory, and how LLMs evolve their predictions.
92
- """)
93
-
94
- def update_output(task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any]:
95
- img, _ = get_layerwise_nonlinearity(task_name, model_name, text, normalization_type)
96
- return img
97
-
98
- def set_default(task_name: str) -> str:
99
- if task_name in ["Layer wise non-linearity", "Next-token prediction from intermediate representations", "Tokenwise loss without i-th layer"]:
100
- return "token-wise"
101
- return "global"
102
-
103
- def check_normalization(task_name: str, normalization_name) -> Tuple[str]:
104
- if task_name == "Contextualization measurement" and normalization_name == "token-wise":
105
- return "global"
106
- return normalization_name
107
-
108
- task_selector.select(set_default, [task_selector], [normalization_selector])
109
- normalization_selector.select(check_normalization, [task_selector, normalization_selector], [normalization_selector])
110
- submit.click(
111
- fn=update_output,
112
- inputs=[task_selector, model_selector, text_message, normalization_selector],
113
- outputs=[box_for_plot]
114
- )
115
 
116
  if __name__ == "__main__":
117
  demo.launch(share=True, server_port=7860, server_name="0.0.0.0")
 
34
  def get_layerwise_nonlinearity(task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any, str]:
35
  return client.send_request(task_name, model_name, text, normalization_type)
36
 
37
+ def update_output(task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any]:
38
+ img, _ = get_layerwise_nonlinearity(task_name, model_name, text, normalization_type)
39
+ return img
40
+
41
+ def set_default(task_name: str) -> str:
42
+ if task_name in ["Layer wise non-linearity", "Next-token prediction from intermediate representations", "Tokenwise loss without i-th layer"]:
43
+ return "token-wise"
44
+ return "global"
45
+
46
+ def check_normalization(task_name: str, normalization_name) -> Tuple[str]:
47
+ if task_name == "Contextualization measurement" and normalization_name == "token-wise":
48
+ return "global"
49
+ return normalization_name
50
+
51
+ def update_description(task_name: str) -> str:
52
+ descriptions = {
53
+ "Layer wise non-linearity": "Non-linearity per layer: shows how complex each layer's transformation is. Red = more nonlinear.",
54
+ "Next-token prediction from intermediate representations": "Layerwise token prediction: when does the model start guessing correctly?",
55
+ "Contextualization measurement": "Context stored in each token: how well can the model reconstruct the previous context?",
56
+ "Layerwise predictions (logit lens)": "Logit lens: what does each layer believe the next token should be?",
57
+ "Tokenwise loss without i-th layer": "Layer ablation: how much does performance drop if a layer is removed?"
58
+ }
59
+ return descriptions.get(task_name, "ℹ️ No description available.")
60
 
61
  with gr.Blocks() as demo:
62
  gr.Markdown("# πŸ”¬ LLM-Microscope β€” Understanding Token Representations in Transformers")
 
88
  label="Select Normalization"
89
  )
90
 
91
+ task_description = gr.Markdown("ℹ️ Choose a mode to see what it does.")
92
+
93
  with gr.Column():
94
  text_message = gr.Textbox(label="Enter your input text:", value="I love to live my life")
95
  submit = gr.Button("Submit")
96
  box_for_plot = gr.Image(label="Visualization", type="pil")
97
 
98
+ with gr.Accordion("πŸ“˜ Full Legend and Interpretation", open=False):
99
+ gr.Markdown("""
 
 
100
  This heatmap shows **how each token is processed** across layers of a language model. Here's how to read it:
101
 
102
  - **Rows**: layers of the model (bottom = deeper)
103
  - **Columns**: input tokens
104
  - **Colors**: intensity of effect (depends on the selected metric)
105
 
106
+ ---
107
+
108
+ ### Metrics explained:
109
 
110
  - `Layer wise non-linearity`: how nonlinear the transformation is at each layer (red = more nonlinear).
111
  - `Next-token prediction from intermediate representations`: shows which layers begin to make good predictions.
 
114
  - `Tokenwise loss without i-th layer`: shows how much each token depends on a specific layer. Red means performance drops if we skip this layer.
115
 
116
  Use this tool to **peek inside the black box** β€” it reveals which layers matter most, which tokens carry the most memory, and how LLMs evolve their predictions.
117
+ """)
118
+
119
+ task_selector.change(fn=update_description, inputs=[task_selector], outputs=[task_description])
120
+ task_selector.select(set_default, [task_selector], [normalization_selector])
121
+ normalization_selector.select(check_normalization, [task_selector, normalization_selector], [normalization_selector])
122
+ submit.click(
123
+ fn=update_output,
124
+ inputs=[task_selector, model_selector, text_message, normalization_selector],
125
+ outputs=[box_for_plot]
126
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
  if __name__ == "__main__":
129
  demo.launch(share=True, server_port=7860, server_name="0.0.0.0")