matveymih's picture
Update app.py
07a26be verified
import gradio as gr
import requests
from PIL import Image
import io
from typing import Any, Tuple
import os
class Client:
def __init__(self, server_url: str):
self.server_url = server_url
def send_request(self, task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any, str]:
response = requests.post(
self.server_url,
json={
"task_name": task_name,
"model_name": model_name,
"text": text,
"normalization_type": normalization_type
},
timeout=60
)
if response.status_code == 200:
response_data = response.json()
img_data = bytes.fromhex(response_data["image"])
img = Image.open(io.BytesIO(img_data))
return img, "OK"
else:
return "Error, please retry", "Error: Could not get response from server"
client = Client(f"http://{os.environ['SERVER']}/predict")
def get_layerwise_nonlinearity(task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any, str]:
return client.send_request(task_name, model_name, text, normalization_type)
def update_output(task_name: str, model_name: str, text: str, normalization_type: str) -> Tuple[Any]:
img, _ = get_layerwise_nonlinearity(task_name, model_name, text, normalization_type)
return img
def set_default(task_name: str) -> str:
if task_name in ["Layer wise non-linearity", "Next-token prediction from intermediate representations", "Tokenwise loss without i-th layer"]:
return "token-wise"
return "global"
def check_normalization(task_name: str, normalization_name) -> Tuple[str]:
if task_name == "Contextualization measurement" and normalization_name == "token-wise":
return "global"
return normalization_name
def update_description(task_name: str) -> str:
descriptions = {
"Layer wise non-linearity": "Non-linearity per layer: shows how complex each layer's transformation is. Red = more nonlinear.",
"Next-token prediction from intermediate representations": "Layerwise token prediction: when does the model start guessing correctly?",
"Contextualization measurement": "Context stored in each token: how well can the model reconstruct the previous context?",
"Layerwise predictions (logit lens)": "Logit lens: what does each layer believe the next token should be?",
"Tokenwise loss without i-th layer": "Layer ablation: how much does performance drop if a layer is removed?"
}
return descriptions.get(task_name, "ℹ️ No description available.")
with gr.Blocks() as demo:
# gr.Markdown("# πŸ”¬ LLM-Microscope β€” Understanding Token Representations in Transformers")
gr.Markdown("# πŸ”¬ LLM-Microscope β€” A Look Inside the Black Box")
gr.Markdown("Select a model, analysis mode, and input β€” then peek inside the black box of an LLM to see which layers matter most, which tokens carry the most memory, and how predictions evolve.")
with gr.Row():
model_selector = gr.Dropdown(
choices=[
"facebook/opt-1.3b",
"TheBloke/Llama-2-7B-fp16",
"Qwen/Qwen3-8B"
],
value="facebook/opt-1.3b",
label="Select Model"
)
task_selector = gr.Dropdown(
choices=[
"Layer wise non-linearity",
"Next-token prediction from intermediate representations",
"Contextualization measurement",
"Layerwise predictions (logit lens)",
"Tokenwise loss without i-th layer"
],
value="Layer wise non-linearity",
label="Select Mode"
)
normalization_selector = gr.Dropdown(
choices=["global", "token-wise"],
value="token-wise",
label="Select Normalization"
)
task_description = gr.Markdown("ℹ️ Choose a mode to see what it does.")
with gr.Column():
text_message = gr.Textbox(label="Enter your input text:", value="I love to live my life")
submit = gr.Button("Submit")
box_for_plot = gr.Image(label="Visualization", type="pil")
with gr.Accordion("πŸ“˜ More Info and Explanation", open=False):
gr.Markdown("""
This heatmap shows **how each token is processed** across layers of a language model. Here's how to read it:
- **Rows**: layers of the model (bottom = deeper)
- **Columns**: input tokens
- **Colors**: intensity of effect (depends on the selected metric)
---
### Metrics explained:
- `Layer wise non-linearity`: how nonlinear the transformation is at each layer (red = more nonlinear).
- `Next-token prediction from intermediate representations`: shows which layers begin to make good predictions.
- `Contextualization measurement`: tokens with more context info get lower scores (green = more context).
- `Layerwise predictions (logit lens)`: tracks how the model’s guesses evolve at each layer.
- `Tokenwise loss without i-th layer`: shows how much each token depends on a specific layer. Red means performance drops if we skip this layer.
Use this tool to **peek inside the black box** β€” it reveals which layers matter most, which tokens carry the most memory, and how LLMs evolve their predictions.
---
You can also use `llm-microscope` as a Python library to run these analyses on **your own models and data**.
Just install it with: `pip install llm-microscope`
More details provided in [GitHub repo](https://github.com/AIRI-Institute/LLM-Microscope).
""")
task_selector.change(fn=update_description, inputs=[task_selector], outputs=[task_description])
task_selector.select(set_default, [task_selector], [normalization_selector])
normalization_selector.select(check_normalization, [task_selector, normalization_selector], [normalization_selector])
submit.click(
fn=update_output,
inputs=[task_selector, model_selector, text_message, normalization_selector],
outputs=[box_for_plot]
)
if __name__ == "__main__":
demo.launch(share=True, server_port=7860, server_name="0.0.0.0")