Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,528 Bytes
3478401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from pathlib import Path
import pandas as pd
import pytest
from src.loaders import load_eval_results, load_leaderboard_datastore, load_raw_eval_results
cur_fp = Path(__file__)
@pytest.mark.parametrize("version", ["AIR-Bench_24.04", "AIR-Bench_24.05"])
def test_load_raw_eval_results(version):
raw_data = load_raw_eval_results(cur_fp.parents[1] / f"toydata/eval_results/{version}")
assert len(raw_data) == 1
full_eval_result = raw_data[0]
expected_attr = [
"eval_name",
"retrieval_model",
"reranking_model",
"retrieval_model_link",
"reranking_model_link",
"results",
"timestamp",
"revision",
"is_anonymous",
]
result_attr = [k for k in full_eval_result.__dict__.keys() if k[:2] != "__" and k[-2:] != "__"]
assert sorted(expected_attr) == sorted(result_attr)
@pytest.mark.parametrize("version", ["AIR-Bench_24.04", "AIR-Bench_24.05"])
def test_load_leaderboard_datastore(version):
file_path = cur_fp.parents[1] / f"toydata/eval_results/{version}"
datastore = load_leaderboard_datastore(file_path, version)
for k, v in datastore.__dict__.items():
if k[:2] != "__" and k[-2:] != "__":
if isinstance(v, list):
assert v
elif isinstance(v, pd.DataFrame):
assert not v.empty
def test_load_eval_results():
file_path = cur_fp.parents[1] / "toydata/eval_results/"
datastore_dict = load_eval_results(file_path)
assert len(datastore_dict) == 2
|