Spaces:
Runtime error
Runtime error
File size: 12,269 Bytes
2bb6dee 394c8f2 2bb6dee 5f99851 2bb6dee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
from contextlib import nullcontext
import gradio as gr
import torch
from torch import autocast
from diffusers import SemanticStableDiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = SemanticStableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to(device)
gen = torch.Generator(device=device)
# Sometimes the nsfw checker is confused by the Pokémon images, you can disable
# it at your own risk here
disable_safety = False
if disable_safety:
def null_safety(images, **kwargs):
return images, False
pipe.safety_checker = null_safety
def infer(prompt, steps, scale, seed, editing_prompt_1 = None, reverse_editing_direction_1 = False, edit_warmup_steps_1=10, edit_guidance_scale_1=5, edit_threshold_1=0.95,
editing_prompt_2 = None, reverse_editing_direction_2 = False, edit_warmup_steps_2=10, edit_guidance_scale_2=5, edit_threshold_2=0.95,
edit_momentum_scale=0.5, edit_mom_beta=0.6):
gen.manual_seed(seed)
images = pipe(prompt, guidance_scale=scale, num_inference_steps=steps, generator=gen).images
editing_prompt = [editing_prompt_1, editing_prompt_2]
reverse_editing_direction = [reverse_editing_direction_1, reverse_editing_direction_2]
edit_warmup_steps = [edit_warmup_steps_1, edit_warmup_steps_2]
edit_guidance_scale = [edit_guidance_scale_1, edit_guidance_scale_2]
edit_threshold = [edit_threshold_1, edit_threshold_2]
indices = [ind for ind, val in enumerate(editing_prompt) if val is None or len(val) <= 1]
for index in sorted(indices, reverse=True):
del editing_prompt[index]
del reverse_editing_direction[index]
del edit_warmup_steps[index]
del edit_guidance_scale[index]
del edit_threshold[index]
gen.manual_seed(seed)
images.extend(pipe(prompt, guidance_scale=scale, num_inference_steps=steps, generator=gen,
editing_prompt=editing_prompt, reverse_editing_direction=reverse_editing_direction, edit_warmup_steps=edit_warmup_steps, edit_guidance_scale=edit_guidance_scale,
edit_momentum_scale=edit_momentum_scale, edit_mom_beta=edit_mom_beta
).images)
return images
css = """
a {
color: inherit;
text-decoration: underline;
}
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: #9d66e5;
background: #9d66e5;
}
input[type='range'] {
accent-color: #9d66e5;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-options {
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
"""
block = gr.Blocks(css=css)
examples = [
[
'a photo of a cat',
50,
7,
3,
'sunglasses',
False,
10,
6,
0.95,
'',
False,
10,
5,
0.95
],
[
'an image of a crowded boulevard, realistic, 4k',
50,
7,
9,
'crowd, crowded, people',
True,
10,
8.3,
0.9,
'',
False,
10,
5,
0.95
],
[
'a castle next to a river',
50,
7,
48,
'boat on a river',
False,
15,
6,
0.9,
'monet, impression, sunrise',
False,
18,
6,
0.8
],
[
'a portrait of a king, full body shot, 8k',
50,
7,
33,
'male',
True,
5,
5,
0.9,
'female',
False,
5,
5,
0.9
],
[
'a photo of a flowerpot',
50,
7,
2,
'glasses',
False,
12,
5,
0.975,
'',
False,
10,
5,
0.95
],
[
'a photo of the face of a woman',
50,
7,
21,
'smiling, smile',
False,
15,
3,
0.99,
'curls, wavy hair, curly hair',
False,
13,
3,
0.925
],
]
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 750px; margin: 0 auto;">
<div>
<img class="logo" src="https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1666181274838-62fa1d95e8c9c532aa75331c.png" alt="AIML Logo"
style="margin: auto; max-width: 7rem;">
<h1 style="font-weight: 900; font-size: 3rem;">
Semantic Guidance for Diffusion
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Interact with semantic concepts during the diffusion process. Details can be found in the paper <a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">SEGA: Instructing Diffusion using Semantic Dimensions</a>. <br/> Simply use the edit prompts to make arbitrary changes to the generation.
</p>
</div>
"""
)
gr.HTML("""
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/AIML-TUDA/semantic-diffusion?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>""")
with gr.Group():
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Generate image").style(
margin=False,
rounded=(False, True, True, False),
)
with gr.Box():
with gr.Row().style(mobile_collapse=False, equal_height=True):
edit_1 = gr.Textbox(
label="Edit Prompt 1",
show_label=False,
max_lines=1,
placeholder="Enter your 1st edit prompt",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
with gr.Group():
with gr.Row().style(mobile_collapse=False, equal_height=True):
rev_1 = gr.Checkbox(
label='Reverse')
warmup_1 = gr.Slider(label='Warmup', minimum=0, maximum=50, value=10, step=1, interactive=True)
scale_1 = gr.Slider(label='Scale', minimum=1, maximum=10, value=5, step=0.25, interactive=True)
threshold_1 = gr.Slider(label='Threshold', minimum=0.5, maximum=0.99, value=0.95, steps=0.01, interactive=True)
with gr.Row().style(mobile_collapse=False, equal_height=True):
edit_2 = gr.Textbox(
label="Edit Prompt 2",
show_label=False,
max_lines=1,
placeholder="Enter your 2nd edit prompt",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
with gr.Group():
with gr.Row().style(mobile_collapse=False, equal_height=True):
rev_2 = gr.Checkbox(
label='Reverse')
warmup_2 = gr.Slider(label='Warmup', minimum=0, maximum=50, value=10, step=1, interactive=True)
scale_2 = gr.Slider(label='Scale', minimum=1, maximum=10, value=5, step=0.25, interactive=True)
threshold_2 = gr.Slider(label='Threshold', minimum=0.5, maximum=0.99, value=0.95, steps=0.01, interactive=True)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
with gr.Row(elem_id="advanced-options"):
scale = gr.Slider(label="Scale", minimum=3, maximum=15, value=7, step=1)
steps = gr.Slider(label="Steps", minimum=5, maximum=50, value=50, step=5, interactive=False)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
#randomize=True,
)
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, steps, scale, seed, edit_1, rev_1, warmup_1, scale_1, threshold_1, edit_2, rev_2, warmup_2, scale_2, threshold_2], outputs=gallery, cache_examples=False)
ex.dataset.headers = [""]
text.submit(infer, inputs=[text, steps, scale, seed, edit_1, rev_1, warmup_1, scale_1, threshold_1, edit_2, rev_2, warmup_2, scale_2, threshold_2], outputs=gallery)
btn.click(infer, inputs=[text, steps, scale, seed, edit_1, rev_1, warmup_1, scale_1, threshold_1, edit_2, rev_2, warmup_2, scale_2, threshold_2], outputs=gallery)
gr.HTML(
"""
<div class="footer">
<p> Gradio Demo by AIML@TU Darmstadt and 🤗 Hugging Face
</p>
</div>
<div class="acknowledgments">
<p>Created by <a href="https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/">Manuel Brack</a> and <a href="justinpinkney.com">Patrick Schramowski</a> at <a href="https://www.aiml.informatik.tu-darmstadt.de">AIML Lab</a>.</p>
</div>
"""
)
block.launch() |