Spaces:
Runtime error
Runtime error
exchange the checkpoint trained on Laion-OCR 10M.
Browse files- .gitignore +3 -1
- config_cuda_ema.yaml +88 -0
- model.ckpt +0 -3
- model_wo_ema.ckpt +2 -2
- scripts/gradio_rendertext.py +0 -314
- transfer.py +1 -1
.gitignore
CHANGED
|
@@ -1 +1,3 @@
|
|
| 1 |
-
*.pyc
|
|
|
|
|
|
|
|
|
| 1 |
+
*.pyc
|
| 2 |
+
*__pycache__/*
|
| 3 |
+
*__pycache__
|
config_cuda_ema.yaml
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
base_learning_rate: 1.0e-6 #1.0e-5 #1.0e-4
|
| 3 |
+
target: cldm.cldm.ControlLDM
|
| 4 |
+
params:
|
| 5 |
+
linear_start: 0.00085
|
| 6 |
+
linear_end: 0.0120
|
| 7 |
+
num_timesteps_cond: 1
|
| 8 |
+
log_every_t: 200
|
| 9 |
+
timesteps: 1000
|
| 10 |
+
first_stage_key: "jpg"
|
| 11 |
+
cond_stage_key: "txt"
|
| 12 |
+
control_key: "hint"
|
| 13 |
+
image_size: 64
|
| 14 |
+
channels: 4
|
| 15 |
+
cond_stage_trainable: false
|
| 16 |
+
conditioning_key: crossattn
|
| 17 |
+
monitor: #val/loss_simple_ema
|
| 18 |
+
scale_factor: 0.18215
|
| 19 |
+
only_mid_control: False
|
| 20 |
+
sd_locked: True
|
| 21 |
+
use_ema: True #TODO: specify
|
| 22 |
+
|
| 23 |
+
control_stage_config:
|
| 24 |
+
target: cldm.cldm.ControlNet
|
| 25 |
+
params:
|
| 26 |
+
use_checkpoint: True
|
| 27 |
+
image_size: 32 # unused
|
| 28 |
+
in_channels: 4
|
| 29 |
+
hint_channels: 3
|
| 30 |
+
model_channels: 320
|
| 31 |
+
attention_resolutions: [ 4, 2, 1 ]
|
| 32 |
+
num_res_blocks: 2
|
| 33 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
| 34 |
+
num_head_channels: 64 # need to fix for flash-attn
|
| 35 |
+
use_spatial_transformer: True
|
| 36 |
+
use_linear_in_transformer: True
|
| 37 |
+
transformer_depth: 1
|
| 38 |
+
context_dim: 1024
|
| 39 |
+
legacy: False
|
| 40 |
+
|
| 41 |
+
unet_config:
|
| 42 |
+
target: cldm.cldm.ControlledUnetModel
|
| 43 |
+
params:
|
| 44 |
+
use_checkpoint: True
|
| 45 |
+
image_size: 32 # unused
|
| 46 |
+
in_channels: 4
|
| 47 |
+
out_channels: 4
|
| 48 |
+
model_channels: 320
|
| 49 |
+
attention_resolutions: [ 4, 2, 1 ]
|
| 50 |
+
num_res_blocks: 2
|
| 51 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
| 52 |
+
num_head_channels: 64 # need to fix for flash-attn
|
| 53 |
+
use_spatial_transformer: True
|
| 54 |
+
use_linear_in_transformer: True
|
| 55 |
+
transformer_depth: 1
|
| 56 |
+
context_dim: 1024
|
| 57 |
+
legacy: False
|
| 58 |
+
|
| 59 |
+
first_stage_config:
|
| 60 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
| 61 |
+
params:
|
| 62 |
+
embed_dim: 4
|
| 63 |
+
monitor: val/rec_loss
|
| 64 |
+
ddconfig:
|
| 65 |
+
#attn_type: "vanilla-xformers"
|
| 66 |
+
double_z: true
|
| 67 |
+
z_channels: 4
|
| 68 |
+
resolution: 256
|
| 69 |
+
in_channels: 3
|
| 70 |
+
out_ch: 3
|
| 71 |
+
ch: 128
|
| 72 |
+
ch_mult:
|
| 73 |
+
- 1
|
| 74 |
+
- 2
|
| 75 |
+
- 4
|
| 76 |
+
- 4
|
| 77 |
+
num_res_blocks: 2
|
| 78 |
+
attn_resolutions: []
|
| 79 |
+
dropout: 0.0
|
| 80 |
+
lossconfig:
|
| 81 |
+
target: torch.nn.Identity
|
| 82 |
+
|
| 83 |
+
cond_stage_config:
|
| 84 |
+
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
| 85 |
+
params:
|
| 86 |
+
freeze: True
|
| 87 |
+
layer: "penultimate"
|
| 88 |
+
# device: "cpu" #TODO: specify
|
model.ckpt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:f5f82f4af7d69b0ffdff6bf3d1b8dc6b13bbf81e28ea0fbacbf68824d2c1f652
|
| 3 |
-
size 8129070351
|
|
|
|
|
|
|
|
|
|
|
|
model_wo_ema.ckpt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c7ae9f29a41152a85bc5001811f80f701fb8b845b44526483497fdd6f4946e4b
|
| 3 |
+
size 6671914001
|
scripts/gradio_rendertext.py
DELETED
|
@@ -1,314 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
from cldm.model import load_state_dict
|
| 3 |
-
from cldm.ddim_hacked import DDIMSampler
|
| 4 |
-
from ldm.util import instantiate_from_config
|
| 5 |
-
import os
|
| 6 |
-
from omegaconf import OmegaConf
|
| 7 |
-
import argparse, os
|
| 8 |
-
from torchvision.transforms import ToTensor
|
| 9 |
-
from torch import autocast
|
| 10 |
-
from contextlib import nullcontext
|
| 11 |
-
from scripts.rendertext_tool import Render_Text, load_model_from_config
|
| 12 |
-
# def load_model_from_config(cfg, ckpt, verbose=False, not_use_ckpt=False):
|
| 13 |
-
# sd = load_state_dict(ckpt, location='cpu')
|
| 14 |
-
|
| 15 |
-
# if "model_ema.input_blocks10in_layers0weight" not in sd:
|
| 16 |
-
# cfg.model.params.use_ema = False
|
| 17 |
-
# model = instantiate_from_config(cfg.model)
|
| 18 |
-
|
| 19 |
-
# if not not_use_ckpt:
|
| 20 |
-
# m, u = model.load_state_dict(sd, strict=False)
|
| 21 |
-
# if len(m) > 0 and verbose:
|
| 22 |
-
# print("missing keys: {}".format(len(m)))
|
| 23 |
-
# print(m)
|
| 24 |
-
# if len(u) > 0 and verbose:
|
| 25 |
-
# print("unexpected keys: {}".format(len(u)))
|
| 26 |
-
# print(u)
|
| 27 |
-
|
| 28 |
-
# model.cuda()
|
| 29 |
-
# model.eval()
|
| 30 |
-
# return model
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
def parse_args():
|
| 36 |
-
parser = argparse.ArgumentParser()
|
| 37 |
-
parser.add_argument(
|
| 38 |
-
"--cfg",
|
| 39 |
-
type=str,
|
| 40 |
-
default="configs/stable-diffusion/textcaps_cldm_v20.yaml",
|
| 41 |
-
help="path to config which constructs model",
|
| 42 |
-
)
|
| 43 |
-
parser.add_argument(
|
| 44 |
-
"--ckpt",
|
| 45 |
-
type=str,
|
| 46 |
-
help="path to checkpoint of model",
|
| 47 |
-
)
|
| 48 |
-
parser.add_argument(
|
| 49 |
-
"--hint_range_m11",
|
| 50 |
-
action="store_true",
|
| 51 |
-
help="the range of the hint image ([-1, 1])",
|
| 52 |
-
)
|
| 53 |
-
parser.add_argument(
|
| 54 |
-
"--precision",
|
| 55 |
-
type=str,
|
| 56 |
-
help="evaluate at this precision",
|
| 57 |
-
choices=["full", "autocast"],
|
| 58 |
-
default="full" #"autocast"
|
| 59 |
-
)
|
| 60 |
-
parser.add_argument(
|
| 61 |
-
"--not_use_ckpt",
|
| 62 |
-
action="store_true",
|
| 63 |
-
help="not to use the ckpt",
|
| 64 |
-
)
|
| 65 |
-
parser.add_argument(
|
| 66 |
-
"--build_demo",
|
| 67 |
-
action="store_true",
|
| 68 |
-
help="whether to build the demo",
|
| 69 |
-
)
|
| 70 |
-
parser.add_argument(
|
| 71 |
-
"--sep_prompt",
|
| 72 |
-
action="store_true",
|
| 73 |
-
help="whether to sep the prompt",
|
| 74 |
-
)
|
| 75 |
-
parser.add_argument(
|
| 76 |
-
"--spell_prompt_type",
|
| 77 |
-
type=int,
|
| 78 |
-
default=1,
|
| 79 |
-
help="1: A sign with the word 'xxx' written on it; 2: A sign that says 'xxx'",
|
| 80 |
-
)
|
| 81 |
-
parser.add_argument(
|
| 82 |
-
"--max_num_prompts",
|
| 83 |
-
type=int,
|
| 84 |
-
default=None,
|
| 85 |
-
help="max num of the used prompts",
|
| 86 |
-
)
|
| 87 |
-
parser.add_argument(
|
| 88 |
-
"--grams",
|
| 89 |
-
type=int,
|
| 90 |
-
default=1,
|
| 91 |
-
help="How many grams (words or symbols) to form the to-be-rendered text (used for DrawSpelling Benchmark)",
|
| 92 |
-
)
|
| 93 |
-
parser.add_argument(
|
| 94 |
-
"--num_samples",
|
| 95 |
-
type=int,
|
| 96 |
-
default=1,
|
| 97 |
-
help="how many samples to produce for each given prompt. A.k.a batch size",
|
| 98 |
-
)
|
| 99 |
-
parser.add_argument(
|
| 100 |
-
"--from-file",
|
| 101 |
-
type=str,
|
| 102 |
-
help="if specified, load prompts from this file, separated by newlines",
|
| 103 |
-
)
|
| 104 |
-
parser.add_argument(
|
| 105 |
-
"--prompt",
|
| 106 |
-
type=str,
|
| 107 |
-
nargs="?",
|
| 108 |
-
default="a sign that says 'Stable Diffusion'",
|
| 109 |
-
help="the prompt"
|
| 110 |
-
)
|
| 111 |
-
parser.add_argument(
|
| 112 |
-
"--rendered_txt",
|
| 113 |
-
type=str,
|
| 114 |
-
nargs="?",
|
| 115 |
-
default="Stable Diffusion",
|
| 116 |
-
help="the text to render"
|
| 117 |
-
)
|
| 118 |
-
parser.add_argument(
|
| 119 |
-
"--uncond_glycon_img",
|
| 120 |
-
action="store_true",
|
| 121 |
-
help="whether to set glyph embedding as None while using unconditional conditioning",
|
| 122 |
-
)
|
| 123 |
-
parser.add_argument(
|
| 124 |
-
"--deepspeed_ckpt",
|
| 125 |
-
action="store_true",
|
| 126 |
-
help="whether to use deepspeed while training",
|
| 127 |
-
)
|
| 128 |
-
parser.add_argument(
|
| 129 |
-
"--glyph_img_size",
|
| 130 |
-
type=int,
|
| 131 |
-
default=256,
|
| 132 |
-
help="the size of input images of the glyph image encoder",
|
| 133 |
-
)
|
| 134 |
-
parser.add_argument(
|
| 135 |
-
"--uncond_glyph_image_type",
|
| 136 |
-
type=str,
|
| 137 |
-
default="white",
|
| 138 |
-
help="the type of rendered glyph images as unconditional conditions while using classifier-free guidance"
|
| 139 |
-
)
|
| 140 |
-
parser.add_argument(
|
| 141 |
-
"--remove_txt_in_prompt",
|
| 142 |
-
action="store_true",
|
| 143 |
-
help="whether to remove text in the prompt",
|
| 144 |
-
)
|
| 145 |
-
parser.add_argument(
|
| 146 |
-
"--replace_token",
|
| 147 |
-
type=str,
|
| 148 |
-
default="",
|
| 149 |
-
help="the token used to replace"
|
| 150 |
-
)
|
| 151 |
-
return parser
|
| 152 |
-
|
| 153 |
-
if not os.path.basename(os.getcwd()) == "stablediffusion":
|
| 154 |
-
os.chdir(os.path.join(os.getcwd(), "stablediffusion"))
|
| 155 |
-
print(os.getcwd())
|
| 156 |
-
parser = parse_args()
|
| 157 |
-
opt = parser.parse_args()
|
| 158 |
-
|
| 159 |
-
if opt.deepspeed_ckpt:
|
| 160 |
-
assert os.path.isdir(opt.ckpt)
|
| 161 |
-
opt.ckpt = os.path.join(opt.ckpt, "checkpoint", "mp_rank_00_model_states.pt")
|
| 162 |
-
assert os.path.exists(opt.ckpt)
|
| 163 |
-
|
| 164 |
-
cfg = OmegaConf.load(f"{opt.cfg}")
|
| 165 |
-
model = load_model_from_config(cfg, f"{opt.ckpt}", verbose=True, not_use_ckpt=opt.not_use_ckpt)
|
| 166 |
-
hint_range_m11 = opt.hint_range_m11
|
| 167 |
-
sep_prompt = opt.sep_prompt
|
| 168 |
-
|
| 169 |
-
ddim_sampler = DDIMSampler(model)
|
| 170 |
-
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
| 171 |
-
trans = ToTensor()
|
| 172 |
-
render_tool = Render_Text(
|
| 173 |
-
model, precision_scope,
|
| 174 |
-
trans,
|
| 175 |
-
hint_range_m11,
|
| 176 |
-
sep_prompt,
|
| 177 |
-
uncond_glycon_img= cfg.uncond_glycon_img if hasattr(cfg, "uncond_glycon_img") else opt.uncond_glycon_img,
|
| 178 |
-
glyph_control_proc_config= cfg.glyph_control_proc_config if hasattr(cfg, "glyph_control_proc_config") else None,
|
| 179 |
-
glyph_img_size = opt.glyph_img_size,
|
| 180 |
-
uncond_glyph_image_type = cfg.uncond_glyph_image_type if hasattr(cfg, "uncond_glyph_image_type") else opt.uncond_glyph_image_type,
|
| 181 |
-
remove_txt_in_prompt = cfg.remove_txt_in_prompt if hasattr(cfg, "remove_txt_in_prompt") else opt.remove_txt_in_prompt,
|
| 182 |
-
replace_token = cfg.replace_token if hasattr(cfg, "replace_token") else opt.replace_token,
|
| 183 |
-
)
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
if opt.build_demo:
|
| 187 |
-
import gradio as gr
|
| 188 |
-
block = gr.Blocks().queue()
|
| 189 |
-
with block:
|
| 190 |
-
with gr.Row():
|
| 191 |
-
gr.Markdown("## Control Stable Diffusion with Glyph Images")
|
| 192 |
-
with gr.Row():
|
| 193 |
-
with gr.Column():
|
| 194 |
-
# input_image = gr.Image(source='upload', type="numpy")
|
| 195 |
-
rendered_txt = gr.Textbox(label="rendered_txt")
|
| 196 |
-
prompt = gr.Textbox(label="Prompt")
|
| 197 |
-
if sep_prompt:
|
| 198 |
-
prompt_2 = gr.Textbox(label="Prompt_ControlNet")
|
| 199 |
-
else:
|
| 200 |
-
prompt_2 = gr.Number(value = 0, visible = False) #None #""
|
| 201 |
-
run_button = gr.Button(label="Run")
|
| 202 |
-
with gr.Accordion("Advanced options", open=False):
|
| 203 |
-
width = gr.Slider(label="bbox_width", minimum=0., maximum=1, value=0.3, step=0.01)
|
| 204 |
-
# height = gr.Slider(label="bbox_height", minimum=0., maximum=1, value=0.2, step=0.01)
|
| 205 |
-
ratio = gr.Slider(label="bbox_width_height_ratio", minimum=0., maximum=5, value=0., step=0.02)
|
| 206 |
-
top_left_x = gr.Slider(label="bbox_top_left_x", minimum=0., maximum=1, value=0.5, step=0.01)
|
| 207 |
-
top_left_y = gr.Slider(label="bbox_top_left_y", minimum=0., maximum=1, value=0.5, step=0.01)
|
| 208 |
-
yaw = gr.Slider(label="bbox_yaw", minimum=-180, maximum=180, value=0, step=5)
|
| 209 |
-
num_rows = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1)
|
| 210 |
-
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
| 211 |
-
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
|
| 212 |
-
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
| 213 |
-
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
| 214 |
-
# low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
|
| 215 |
-
# high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
|
| 216 |
-
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
| 217 |
-
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
| 218 |
-
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 219 |
-
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
| 220 |
-
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
| 221 |
-
n_prompt = gr.Textbox(label="Negative Prompt",
|
| 222 |
-
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
| 223 |
-
with gr.Column():
|
| 224 |
-
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
| 225 |
-
ips = [
|
| 226 |
-
rendered_txt, prompt,
|
| 227 |
-
width, ratio, # height,
|
| 228 |
-
top_left_x, top_left_y, yaw, num_rows,
|
| 229 |
-
a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta,
|
| 230 |
-
prompt_2
|
| 231 |
-
]
|
| 232 |
-
run_button.click(fn=render_tool.process, inputs=ips, outputs=[result_gallery])
|
| 233 |
-
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
block.launch(server_name='0.0.0.0', share=True)
|
| 237 |
-
else:
|
| 238 |
-
import easyocr
|
| 239 |
-
reader = easyocr.Reader(['en'])
|
| 240 |
-
# num_samples = 1
|
| 241 |
-
# rendered_txt = "happy"
|
| 242 |
-
# prompt = "A sign that says 'happy'"
|
| 243 |
-
|
| 244 |
-
num_samples = opt.num_samples
|
| 245 |
-
print("the num of samples is {}".format(num_samples))
|
| 246 |
-
if not opt.from_file:
|
| 247 |
-
prompts = [opt.prompt]
|
| 248 |
-
data = [opt.rendered_txt]
|
| 249 |
-
print("the prompt is {}".format(prompts))
|
| 250 |
-
print("the rendered_txt is {}".format(data))
|
| 251 |
-
assert prompts is not None
|
| 252 |
-
else:
|
| 253 |
-
print(f"reading prompts from {opt.from_file}")
|
| 254 |
-
with open(opt.from_file, "r") as f:
|
| 255 |
-
data = f.read().splitlines()
|
| 256 |
-
if "gram" in os.path.basename(opt.from_file):
|
| 257 |
-
data = [item.split("\t")[0] for item in data]
|
| 258 |
-
if opt.grams > 1:
|
| 259 |
-
data = [" ".join(data[i:i + opt.grams]) for i in range(0, len(data), opt.grams)]
|
| 260 |
-
if "DrawText_Spelling" in os.path.basename(opt.from_file) or "gram" in os.path.basename(opt.from_file):
|
| 261 |
-
if opt.spell_prompt_type == 1:
|
| 262 |
-
prompts = ['A sign with the word "{}" written on it'.format(line.strip()) for line in data]
|
| 263 |
-
elif opt.spell_prompt_type == 2:
|
| 264 |
-
prompts = ["A sign that says '{}'".format(line.strip()) for line in data]
|
| 265 |
-
elif opt.spell_prompt_type == 20:
|
| 266 |
-
prompts = ['A sign that says "{}"'.format(line.strip()) for line in data]
|
| 267 |
-
elif opt.spell_prompt_type == 3:
|
| 268 |
-
prompts = ["A whiteboard that says '{}'".format(line.strip()) for line in data]
|
| 269 |
-
elif opt.spell_prompt_type == 30:
|
| 270 |
-
prompts = ['A whiteboard that says "{}"'.format(line.strip()) for line in data]
|
| 271 |
-
else:
|
| 272 |
-
print("Only five types of prompt templates are supported currently")
|
| 273 |
-
raise ValueError
|
| 274 |
-
# if opt.verbose_all_prompts:
|
| 275 |
-
# show_num = opt.max_num_prompts if (opt.max_num_prompts is not None and opt.max_num_prompts >0) else 10
|
| 276 |
-
# for i in range(show_num):
|
| 277 |
-
# print("embed the word into the prompt template for {} Benchmark: {}".format(
|
| 278 |
-
# os.path.basename(opt.from_file), data[i])
|
| 279 |
-
# )
|
| 280 |
-
# else:
|
| 281 |
-
# print("embed the word into the prompt template for {} Benchmark: e.g., {}".format(
|
| 282 |
-
# os.path.basename(opt.from_file), data[0])
|
| 283 |
-
# )
|
| 284 |
-
if opt.max_num_prompts is not None and opt.max_num_prompts >0:
|
| 285 |
-
print("only use {} prompts to test the model".format(opt.max_num_prompts))
|
| 286 |
-
data = data[:opt.max_num_prompts]
|
| 287 |
-
prompts = prompts[:opt.max_num_prompts]
|
| 288 |
-
|
| 289 |
-
width, ratio, top_left_x, top_left_y, yaw, num_rows = 0.3, 0, 0.5, 0.5, 0, 1
|
| 290 |
-
image_resolution = 512
|
| 291 |
-
strength = 1
|
| 292 |
-
guess_mode = False
|
| 293 |
-
ddim_steps = 20
|
| 294 |
-
scale = 9.0
|
| 295 |
-
seed = 1945923867
|
| 296 |
-
eta = 0
|
| 297 |
-
a_prompt = 'best quality, extremely detailed'
|
| 298 |
-
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 299 |
-
|
| 300 |
-
all_results_list = []
|
| 301 |
-
for i in range(len(data)):
|
| 302 |
-
ips = (
|
| 303 |
-
data[i], prompts[i],
|
| 304 |
-
width, ratio, top_left_x, top_left_y, yaw, num_rows,
|
| 305 |
-
a_prompt, n_prompt,
|
| 306 |
-
num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta
|
| 307 |
-
)
|
| 308 |
-
all_results = render_tool.process(*ips) #process(*ips)
|
| 309 |
-
all_results_list.extend(all_results[1:] if data[i] != "" else all_results)
|
| 310 |
-
all_ocr_info = []
|
| 311 |
-
for image_array in all_results_list:
|
| 312 |
-
ocr_result = reader.readtext(image_array)
|
| 313 |
-
all_ocr_info.append(ocr_result)
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
transfer.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
from omegaconf import OmegaConf
|
| 2 |
from scripts.rendertext_tool import Render_Text, load_model_from_config
|
| 3 |
import torch
|
| 4 |
-
cfg = OmegaConf.load("
|
| 5 |
model = load_model_from_config(cfg, "model_states.pt", verbose=True)
|
| 6 |
|
| 7 |
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
|
|
| 1 |
from omegaconf import OmegaConf
|
| 2 |
from scripts.rendertext_tool import Render_Text, load_model_from_config
|
| 3 |
import torch
|
| 4 |
+
cfg = OmegaConf.load("config_cuda_ema.yaml")
|
| 5 |
model = load_model_from_config(cfg, "model_states.pt", verbose=True)
|
| 6 |
|
| 7 |
from pytorch_lightning.callbacks import ModelCheckpoint
|