Spaces:
Runtime error
Runtime error
File size: 16,962 Bytes
0902a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from ldm.util import instantiate_from_config
# from datasets import load_dataset
import os
from collections import defaultdict
import cv2
import albumentations
import random
from ldm.data.util import new_process_im, imagenet_process_im
class TextCapsCLDataset(Dataset):
def __init__(self,
img_folder,
caption_file=None,
image_transforms=[],
first_stage_key = "jpg", cond_stage_key = "txt",
OneCapPerImage = False,
default_caption="",
ext="jpg",
postprocess=None,
return_paths=False,
filter_data=False,
filter_words=["sign", "poster"],
ocr_file=None,
no_hint = False,
hint_folder = None,
control_key = "hint",
# aug4hint = True,
do_tutorial_proc = False,
imagenet_proc = False,
imagenet_proc_config = None,
filter_ocr_tokens = False,
do_new_proc = True,
new_proc_config = None,
random_drop_caption = False,
drop_caption_p = 0.5,
new_ocr_info = True,
sep_cap_for_2b = False,
rendered_txt_in_caption = False,
filter_token_num = False,
max_token_num = 3,
random_drop_sd_caption = False,
drop_sd_caption_p = 0.1,
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = Path(img_folder)
self.first_stage_key = first_stage_key
self.cond_stage_key = cond_stage_key
# postprocess
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
# image transform
self.imagenet_proc = imagenet_proc
self.do_new_proc = do_new_proc
self.do_tutorial_proc = do_tutorial_proc
# self.aug4hint = aug4hint
if self.do_new_proc:
if new_proc_config is not None:
self.new_proc_func = instantiate_from_config(new_proc_config)
else:
self.new_proc_func = new_process_im()
elif not self.do_tutorial_proc:
if self.imagenet_proc:
if imagenet_proc_config is not None:
self.imagenet_proc_func = instantiate_from_config(imagenet_proc_config)
else:
self.imagenet_proc_func = imagenet_process_im()
self.process_im = self.imagenet_proc_func
else:
if isinstance(image_transforms, ListConfig):
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(), # to be checked
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
self.process_im = self.simple_process_im
# caption
if caption_file is not None:
with open(caption_file, "rt") as f:
ext = Path(caption_file).suffix.lower()
if ext == ".json":
captions = json.load(f)
# elif ext == ".jsonl":
# lines = f.readlines()
# lines = [json.loads(x) for x in lines]
# captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
else:
raise ValueError(f"Unrecognised format: {ext}")
self.captions = captions["data"]
if OneCapPerImage and ocr_file is None:
new_captions = []
taken_images = []
for caption_data in self.captions:
if caption_data["image_id"] in taken_images:
continue
else:
new_captions.append(caption_data)
taken_images.append(caption_data["image_id"])
self.captions = new_captions
else:
self.captions = None
if not isinstance(ext, (tuple, list, ListConfig)):
ext = [ext]
# Only used if there is no caption file
self.paths = []
for e in ext:
self.paths.extend(list(self.root_dir.rglob(f"*.{e}")))
self.default_caption = default_caption
self.return_paths = return_paths
self.filter_data = filter_data
self.filter_words = filter_words
self.ocr_file = ocr_file
self.ocr_data = []
if ocr_file is not None:
assert self.captions is not None
with open(ocr_file, "r") as f:
ocrs = json.loads(f.read())
ocr_data = ocrs['data']
self.ocr_data = ocr_data
self.no_hint = no_hint
self.control_key = control_key
self.hint_folder = None
if not self.no_hint:
if hint_folder is None:
print("Warning: The folder of hint images is not provided! No hint will be used")
self.no_hint = True
else:
self.hint_folder = Path(hint_folder)
self.filter_ocr_tokens = filter_ocr_tokens
self.random_drop_caption = random_drop_caption
self.drop_caption_p = drop_caption_p
self.new_ocr_info = new_ocr_info
self.sep_cap_for_2b = sep_cap_for_2b
self.rendered_txt_in_caption = rendered_txt_in_caption
self.filter_token_num = filter_token_num
self.max_token_num = max_token_num
self.random_drop_sd_caption = random_drop_sd_caption
self.drop_sd_caption_p = drop_sd_caption_p
def __len__(self):
if self.ocr_file is not None:
return len(self.ocr_data)
if self.captions is not None:
# return len(self.captions.keys())
return len(self.captions)
else:
return len(self.paths)
def __getitem__(self, index):
data = {}
if self.ocr_file is not None:
sample = self.ocr_data[index]
image_id = sample["image_id"]
ocr_tokens = sample["ocr_tokens"]
ocr_info = sample["ocr_info"]
chosen = image_id + ".jpg"
filename = self.root_dir/chosen
for d in self.captions:
if d["image_id"] == image_id:
image_captions = d["reference_strs"]
image_classes = d["image_classes"]
break
if not len(ocr_tokens) or not len(image_captions) or not len(image_classes):
return self.__getitem__(np.random.choice(self.__len__()))
if self.filter_ocr_tokens:
tokens_state=defaultdict(list)
for token in ocr_tokens:
token_info = [
caption for caption in image_captions if (token.lower() in caption.rstrip(".").lower().split(" "))
]
tokens_state[len(token_info)].append(token.lower())
max_n = max(tokens_state.keys())
if max_n > 0:
valid_tokens = list(set(tokens_state[max_n]))
pos_info = dict()
for token in valid_tokens:
for item in ocr_info:
if item['word'].lower() == token:
token_box = item['bounding_box']
tx, ty = token_box['top_left_x'], token_box['top_left_y']
pos_info[token] = tx+ty
break
# arrange_tokens = list(dict(sorted(pos_info.items(), key=lambda x: x[1])).keys())
arrange_tokens = [item[0] for item in (sorted(pos_info.items(), key=lambda x: x[1]))]
valid_words = " ".join(arrange_tokens)
class_name = ""
for word in self.filter_words:
if word in " ".join(image_classes).lower():
class_name = word
break
if class_name == "":
return self.__getitem__(np.random.choice(self.__len__()))
else:
caption = "A {} that says '{}'.".format(
class_name, valid_words
)
else:
return self.__getitem__(np.random.choice(self.__len__()))
else:
caption = random.choice(image_captions)
if self.filter_data:
if not len([word for word in self.filter_words if word in " ".join(image_classes).lower()]):
return self.__getitem__(np.random.choice(self.__len__()))
with Image.open(filename) as img:
im_w, im_h = img.size
pos_info_list = []
pos_info_dict = dict()
if self.filter_token_num and len(ocr_info) > self.max_token_num:
return self.__getitem__(np.random.choice(self.__len__()))
for item in ocr_info:
token_box = item['bounding_box']
lf, up = token_box['top_left_x'], token_box['top_left_y']
w, h = token_box['width'], token_box['height']
if not self.new_ocr_info:
# old version
rg, dn = lf + w, up + h
pos_info_list.append([lf, up, rg, dn])
else:
## fix the bug when rotation happens
# pos_info_dict[item["word"]] = 0.06 * lf + up
lf, w = int(lf * im_w), int(w * im_w)
up, h = int(up * im_h), int(h * im_h)
yaw = token_box['yaw']
# if yaw > 5:
# aa = 1
tf_xy = np.array([lf, up])
yaw = yaw * np.pi / 180
rotate_mx = np.array([
[np.cos(yaw), -np.sin(yaw)],
[np.sin(yaw), np.cos(yaw)]
])
rel_cord = np.matmul(rotate_mx, np.array(
[[0, 0],
[w, 0],
[0, h],
[w, h]]
).T)
min_xy = np.min(rel_cord, axis = 1).astype(int) + tf_xy
max_xy = np.max(rel_cord, axis = 1).astype(int) + tf_xy
pos_info_list.append(
[
min_xy[0], min_xy[1],
max_xy[0], max_xy[1]
]
)
mean_xy = rel_cord[:, -1] / 2 + tf_xy
pos_info_dict[item["word"]] = 0.2 * lf + mean_xy[1] #0.15
pos_info_list = np.array(pos_info_list)
all_lf, all_up = np.min(pos_info_list[:, :2], axis = 0)
all_rg, all_dn = np.max(pos_info_list[:, 2:], axis = 0)
all_pos_info = [all_lf, all_up, all_rg, all_dn]
if self.rendered_txt_in_caption:
assert self.filter_data
arrange_tokens = [item[0] for item in (sorted(pos_info_dict.items(), key=lambda x: x[1]))]
valid_words = " ".join(arrange_tokens)
class_name = ""
for word in self.filter_words:
if word in " ".join(image_classes).lower():
class_name = word
break
if class_name == "":
return self.__getitem__(np.random.choice(self.__len__()))
else:
out_caption = 'A {} that says "{}".'.format(
class_name, valid_words
)
else:
if self.captions is not None:
# chosen = list(self.captions.keys())[index]
# caption = self.captions.get(chosen, None)
caption_data = self.captions[index]
chosen = os.path.basename(caption_data["image_path"])
caption = caption_data["caption_str"]
if caption is None:
caption = self.default_caption
filename = self.root_dir/chosen
image_classes = caption_data["image_classes"]
# data[self.cond_stage_key] = caption
else:
filename = self.paths[index]
caption = self.default_caption
image_classes = [""]
# data[self.cond_stage_key] = self.default_caption
if self.filter_data:
if not len([word for word in self.filter_words if word in " ".join(image_classes).lower()]):
return self.__getitem__(np.random.choice(self.__len__()))
# if not len([word for word in self.filter_words if word in caption.rstrip(".").lower().split(" ")]):
# return self.__getitem__(np.random.choice(self.__len__()))
if not self.no_hint:
hint_filename = self.hint_folder/chosen
if not os.path.isfile(hint_filename):
print("Hint file {} does not exist".format(hint_filename))
return self.__getitem__(np.random.choice(self.__len__()))
else:
hint_filename = None
if self.do_tutorial_proc:
# to be aborted
im, im_hint = self.tutorial_process_im(filename, hint_filename)
elif self.do_new_proc:
# recommended
assert all_pos_info
im, im_hint = self.new_proc_func(filename, all_pos_info, hint_filename)
else:
im_hint = None
im = Image.open(filename)
im = self.process_im(im) # not supported for the flip option for now
if hint_filename is not None:
im_hint = Image.open(hint_filename)
im_hint = self.process_im(im_hint) #if self.aug4hint else self.noaug_process_im(im_hint)
if not self.no_hint:
assert im_hint is not None
data[self.control_key] = im_hint
data[self.first_stage_key] = im
if self.return_paths:
data["path"] = str(filename)
if not self.rendered_txt_in_caption:
out_caption = caption
if self.random_drop_caption:
if torch.rand(1) < self.drop_caption_p:
out_caption = ""
if self.random_drop_sd_caption:
assert self.sep_cap_for_2b
if torch.rand(1) < self.drop_sd_caption_p:
caption = ""
if not self.sep_cap_for_2b:
data[self.cond_stage_key] = out_caption
else:
data[self.cond_stage_key] = [caption, out_caption]
if self.postprocess is not None:
data = self.postprocess(data)
return data
def simple_process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
# def noaug_process_im(self, im):
# # To be aborted: lack consideration of different image sizes
# im = im.convert("RGB")
# im_trans = [transforms.ToTensor(), # to be checked
# transforms.Lambda(lambda x: rearrange(x, 'c h w -> h w c'))]
# im_trans= transforms.Compose(im_trans)
# im = im_trans(im)
# return im
def tutorial_process_im(self, target_filename, source_filename = None):
# To be aborted: lack consideration of different image sizes
target = cv2.imread(target_filename)
target = cv2.cvtColor(target, cv2.COLOR_BGR2RGB)
target = (target.astype(np.float32) / 127.5) - 1.0 # Normalize target images to [-1, 1].
if source_filename is not None:
source = cv2.imread(source_filename)
# Do not forget that OpenCV read images in BGR order.
source = cv2.cvtColor(source, cv2.COLOR_BGR2RGB)
# Normalize source images to [0, 1].
source = source.astype(np.float32) / 255.0
else:
source = None
return target, source
|