Spaces:
Sleeping
Sleeping
File size: 16,673 Bytes
0902a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from ldm.util import instantiate_from_config
# from datasets import load_dataset
import os
from collections import defaultdict
import cv2
import albumentations
import random
from ldm.data.util import new_process_im_base, process_wb_im, vqgan_process_im #, imagenet_process_im
from glob import glob
import random
import base64
from io import BytesIO
from annotator.render_images import render_glyph_image
class LaionOCRCLDataset(Dataset):
def __init__(self,
img_folder,
ocr_folder,
data_info_file,
max_num_samples = -1,
no_hint = False,
first_stage_key = "jpg",
cond_stage_key = "txt",
control_key = "hint",
BLIP_caption = False, #True,
filter_ocr_data = False,
filter_way = 0, #0, 1, 2
ocr_threshold = 0.5,
ocr_area_ths = 0.1,
max_token_num = 3,
rendered_txt_in_caption = False,
caption_choices = ["original", "w_rend_text", "wo_rend_text"],
caption_drop_rates = [0.1, 0.5, 0.1],
postprocess=None,
new_proc_config = None,
add_glyph_control = False,
glyph_control_key = "centered_hint", # "arranged_hint"
glyph_control_proc_config = None,
# centered_glyph_folder = None,
max_glyph_imgs_num = 0, #5,
glyph_image_encoder_type = "CLIP",
rm_text_from_cp = False,
replace_token = "",
glyph_image_drop_rate = 0,
uncond_glyph_image_type = "white", #"whiteboard",
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
with open(data_info_file, "r") as f:
data_infos = f.readlines()
if max_num_samples > 0:
data_infos = random.sample(data_infos, max_num_samples)
self.data_infos = data_infos
self.img_folder = img_folder
self.ocr_folder = ocr_folder
self.ocr_threshold = ocr_threshold
self.no_hint = no_hint
self.filter_ocr_data = filter_ocr_data
self.filter_way = filter_way
self.max_token_num = max_token_num
self.ocr_area_ths =ocr_area_ths
self.caption_choices = caption_choices
self.caption_drop_rates = caption_drop_rates
self.rendered_txt_in_caption = rendered_txt_in_caption
self.BLIP_caption = BLIP_caption
self.first_stage_key = first_stage_key
self.cond_stage_key = cond_stage_key
self.control_key = control_key
# centered_hint
self.add_glyph_control = add_glyph_control #False
self.glyph_control_key = glyph_control_key
if self.add_glyph_control:
if glyph_image_encoder_type not in ["CLIP", "VQGAN"]:
print("currently not support other types of glyph image encoders")
raise ValueError
if glyph_control_proc_config is not None:
self.glyph_control_proc = instantiate_from_config(glyph_control_proc_config)
else:
if glyph_image_encoder_type == "CLIP":
self.glyph_control_proc = process_wb_im(exchange_channel= True, image_transforms=[])
elif glyph_image_encoder_type == "VQGAN":
self.glyph_control_proc = vqgan_process_im(augment=False, ori_preprocessor = False)
self.glyph_image_encoder_type = glyph_image_encoder_type
self.max_glyph_imgs_num = max_glyph_imgs_num
# postprocess
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
# image transform
if new_proc_config is not None:
self.new_proc_func = instantiate_from_config(new_proc_config)
else:
self.new_proc_func = new_process_im_base()
self.filtered_data_list = []
self.rm_text_from_cp = rm_text_from_cp
self.replace_token = replace_token
self.glyph_image_drop_rate = glyph_image_drop_rate
self.uncond_glyph_image_type = uncond_glyph_image_type
def __len__(self):
return len(self.data_infos)
def __getitem__(self, index):
data = {}
# data info
data_info = self.data_infos[index]
info_split = [di.strip() for di in data_info.split("\t")]
try:
assert len(info_split) == 5
except:
print("data_info_error", len(info_split))
return self.__getitem__(np.random.choice(self.__len__()))
tsv_name = info_split[2]
path_split = tsv_name.split("/")
try:
assert len(path_split) <= 2
except:
print("wrong tsv path", tsv_name)
return self.__getitem__(np.random.choice(self.__len__()))
tsv_name = path_split[-1]
if len(path_split) == 2:
img_folder = os.path.join(self.img_folder, path_split[0])
ocr_folder = os.path.join(
self.ocr_folder,
path_split[0].rstrip("_with_new_caption").replace("ori", "ocr")
)
else:
img_folder = self.img_folder
ocr_folder = self.ocr_folder
file_pos = eval(info_split[3])
idx_in_tsv = eval(info_split[4])
img_id = "\t".join(info_split[:2])
if self.filter_ocr_data and img_id in self.filtered_data_list:
return self.__getitem__(np.random.choice(self.__len__()))
# original image
ori_tsv_file = os.path.join(img_folder, tsv_name)
with open(ori_tsv_file, "r") as f:
f.seek(file_pos)
img_info = f.readline()
img_info_split = [di.strip() for di in img_info.split("\t")]
try:
assert len(img_info_split) >= 4 #=4
assert img_id == "\t".join(img_info_split[:2])
except:
print("image_info_error", len(img_info_split), img_id, "\t".join(img_info_split[:2]))
return self.__getitem__(np.random.choice(self.__len__()))
img_code = img_info_split[2] #[-2]
try:
ori_img = Image.open(BytesIO(base64.b64decode(img_code)))
except:
print("can't open original image: {}".format(img_id))
return self.__getitem__(np.random.choice(self.__len__()))
if self.BLIP_caption:
try:
assert len(img_info_split) == 5
except:
print("caption_error", len(img_info_split), img_id, "\t".join(img_info_split[:2]), img_info_split[-1])
return self.__getitem__(np.random.choice(self.__len__()))
caption_ori = img_info_split[-1]
else:
caption_ori = img_info_split[3]
img_size = ori_img.size
# ocr info
name_split = os.path.splitext(tsv_name)[0].split("_")
ocr_infos_file = os.path.join(
ocr_folder,
"_".join(name_split[:-1] + ["ocr_info"] + [name_split[-1]]) + ".json"
)
try:
with open(ocr_infos_file, "r") as f:
ocr_infos = json.load(f)
except:
print("can't open ocr info file {}".format(ocr_infos_file))
return self.__getitem__(np.random.choice(self.__len__()))
try:
ocr_info = ocr_infos[img_id]
assert len(ocr_info) > 0
except:
print("the ocr info of the {} is missing in {}".format(img_id, ocr_infos_file))
return self.__getitem__(np.random.choice(self.__len__()))
if self.filter_ocr_data and self.filter_way == 0 and len(ocr_info) > self.max_token_num:
if img_id not in self.filtered_data_list:
self.filtered_data_list.append(img_id)
return self.__getitem__(np.random.choice(self.__len__()))
ocr_area = 0
pos_info_list = []
pos_info_tuples = []
for info in ocr_info:
bbox, (text, confidence) = info
if confidence > self.ocr_threshold:
xy_info = np.array(bbox)
min_x, min_y = np.min(xy_info, axis = 0).astype(int)
max_x, max_y = np.max(xy_info, axis = 0).astype(int)
pos_info_list.append(
[min_x, min_y, max_x, max_y]
)
mean_xy = (xy_info[0] + xy_info[2]) / 2
lf = xy_info[0, 0] # min_x
pos_info_tuples.append((text, 0.2 * lf + mean_xy[1])) #0.15
# ocr_txt = info[1]
if self.filter_ocr_data and self.filter_way == 1:
ocr_area += np.abs(
np.linalg.det(
[xy_info[1] - xy_info[0], xy_info[3] - xy_info[0]]
)
)
if self.filter_ocr_data and self.filter_way == 1:
if ocr_area < self.ocr_area_ths * (img_size[0] * img_size[1]):
if img_id not in self.filtered_data_list:
self.filtered_data_list.append(img_id)
return self.__getitem__(np.random.choice(self.__len__()))
pos_info_list = np.array(pos_info_list)
all_lf, all_up = np.min(pos_info_list[:, :2], axis = 0)
all_rg, all_dn = np.max(pos_info_list[:, 2:], axis = 0)
all_pos_info = [all_lf, all_up, all_rg, all_dn]
# the third way to filter ocr data
if self.filter_ocr_data and self.filter_way == 2:
if (all_rg - all_lf) * (all_dn - all_up) < self.ocr_area_ths * (img_size[0] * img_size[1]):
if img_id not in self.filtered_data_list:
self.filtered_data_list.append(img_id)
return self.__getitem__(np.random.choice(self.__len__()))
# hint image
if not self.no_hint:
hint_tsv_file = os.path.join(
ocr_folder,
"_".join(name_split[:-1] + ["rendered"] + [name_split[-1]]) + ".tsv"
)
with open(hint_tsv_file, "r") as f:
hint_img_infos = f.readlines()
hint_img_info = hint_img_infos[idx_in_tsv]
hint_img_info_split = [di.strip() for di in hint_img_info.split("\t")]
try:
assert len(hint_img_info_split) == 3
assert img_id == "\t".join(hint_img_info_split[:2])
except:
print("hint_image_info_error", len(hint_img_info_split), img_id, "\t".join(hint_img_info_split[:2]))
return self.__getitem__(np.random.choice(self.__len__()))
hint_img_code = hint_img_info_split[-1]
try:
hint_img = Image.open(BytesIO(base64.b64decode(hint_img_code)))
except:
print("can't open hint image: {}".format(img_id))
return self.__getitem__(np.random.choice(self.__len__()))
else:
hint_img = None
# return self.__getitem__(np.random.choice(self.__len__()))
assert all_pos_info
im, im_hint = self.new_proc_func(ori_img, all_pos_info, hint_img)
if not self.no_hint:
assert im_hint is not None
data[self.control_key] = im_hint
data[self.first_stage_key] = im
caption_wr_text = None
arrange_tokens = [item[0] for item in (sorted(pos_info_tuples, key=lambda x: x[1]))]
if self.rendered_txt_in_caption:
valid_words = " ".join(arrange_tokens)
caption_wr_text = caption_ori + '. Words in the image: "{}"'.format(valid_words)
# class_name = ""
# if class_name == "":
# return self.__getitem__(np.random.choice(self.__len__()))
# else:
# caption_wr_text = 'A {} that says "{}".'.format(
# class_name, valid_words
# )
if self.add_glyph_control:
drop_glyph_image = torch.rand(1) < self.glyph_image_drop_rate
# if drop_glyph_image:
# aa = 1
# assert self.uncond_glyph_image_type == "whiteboard"
# Currently only support whiteboard images as unconditional condition of glyph image embeddings
if self.glyph_control_key == "centered_hint":
glyphs = [rg.strip() for rg in arrange_tokens]
if len(glyphs) == 0:
print("error: glyphs - None")
return self.__getitem__(np.random.choice(self.__len__()))
if self.max_glyph_imgs_num > 0:
glyphs = glyphs[:self.max_glyph_imgs_num]
if not drop_glyph_image:
glyph_images = render_glyph_image(glyphs, fill_way="tight") #"both_padding"
cglyph_images_procd = []
for cgim in glyph_images:
if 0 in cgim.size:
print("error: glyph image has ", cgim.size, arrange_tokens)
return self.__getitem__(np.random.choice(self.__len__()))
try:
cgim_processed = self.glyph_control_proc(cgim)
cglyph_images_procd.append(cgim_processed)
except Exception as e:
print(e)
print("invalid glyph image", cgim.size)
return self.__getitem__(np.random.choice(self.__len__()))
else:
cglyph_images_procd = [
self.glyph_control_proc(Image.new("RGB", (224, 224), self.uncond_glyph_image_type))
] * len(glyphs)
# cglyph_images_procd = [self.glyph_control_proc(cgim) for cgim in glyph_images]
elif self.glyph_control_key == "arranged_hint":
assert hint_img is not None
cglyph_images_procd = [
self.glyph_control_proc(
hint_img if not drop_glyph_image else
Image.new("RGB", (224, 224), self.uncond_glyph_image_type)
)
]
else:
print("not support glyph control keys beyond 'centered_hint' and 'arranage_hint'")
raise ValueError
if isinstance(cglyph_images_procd[0], torch.Tensor):
data[self.glyph_control_key] = torch.stack(cglyph_images_procd, dim = 0)
elif isinstance(cglyph_images_procd[0], np.ndarray):
data[self.glyph_control_key] = np.stack(cglyph_images_procd, axis = 0)
caption_wo_text = None
if self.rm_text_from_cp and self.BLIP_caption: # only generate the caption without the rendered words in it while using BLIP captions
# caption_wo_text = caption_ori
# for token in arrange_tokens:
# caption_wo_text = caption_wo_text.replace(token, self.replace_token)
caption_items = caption_ori.split(" ")
lower_arrange_tokens = [tk.lower() for tk in arrange_tokens]
caption_wo_text = []
for cp_item in caption_items:
if cp_item.lower() in lower_arrange_tokens:
if self.replace_token != "":
caption_wo_text.append(self.replace_token)
else:
caption_wo_text.append(cp_item)
caption_wo_text = " ".join(caption_wo_text)
prompt_list = []
for i in range(len(self.caption_choices)):
cc = self.caption_choices[i]
if cc == "original":
caption = caption_ori
elif cc == "w_rend_text":
caption = caption_wr_text if caption_wr_text is not None else caption_ori
elif cc == "wo_rend_text":
caption = caption_wo_text if caption_wo_text is not None else caption_ori
if torch.rand(1) < self.caption_drop_rates[i]:
caption = ""
prompt_list.append(caption)
data[self.cond_stage_key] = prompt_list if len(prompt_list) > 1 else prompt_list[0]
if self.postprocess is not None:
data = self.postprocess(data)
return data
|