File size: 16,956 Bytes
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import os 
from glob import glob
import cv2
import albumentations
import numpy as np
from PIL import Image
import pandas as pd
from torchvision import transforms
# from skimage import io
from tqdm import tqdm
import base64
from io import BytesIO
# from ldm.data.base import Txt2ImgIterableBaseDataset
from torch.utils.data.dataloader import _get_distributed_settings
# from abc import abstractmethod
# from torch.utils.data import IterableDataset
import clip 
import subprocess
from ldm.data.base import Txt2ImgIterableBaseDataset
import tempfile
class LAIONIterableBaseDataset(Txt2ImgIterableBaseDataset):
    '''
    Load laion dataset into the IterableDatasets class
    '''
    def __init__(self, img_folder, caption_folder=None, img_txt_same_file = False, 
                 blob_folder=None, sas_token =None, 
                 max_num_records = 128, max_num_tsv_per_record = 182, tsv_patch_size = 10, start_tsv_idx=None,
                 do_azcopy=False,
                 remove_data_from_cluster=False,
                 size=256,
                 first_stage_key = "jpg", cond_stage_key = "txt", 
                 clip_model = None, preprocess = None,
                 do_flip = False, min_crop_f=0.5, max_crop_f=1., flip_p=0.5, random_crop=True):
        assert size
        super().__init__(size=size)

        self.img_folder = img_folder
        self.caption_folder = caption_folder
        self.img_txt_same_file = img_txt_same_file
        if not self.img_txt_same_file:
            # blob info
            self.blob_folder = blob_folder 
            self.sas_token = sas_token
            self.image_blob_name = os.path.basename(img_folder)
            self.caption_blob_name = os.path.basename(caption_folder)
            self.remove_data_from_cluster =  remove_data_from_cluster if do_azcopy else False
            self.do_azcopy = do_azcopy
            self.max_num_tsv_per_record = max_num_tsv_per_record
            self.tsv_patch_size = tsv_patch_size
            self.start_tsv_idx = int(self.tsv_patch_size / 2) if start_tsv_idx is None else start_tsv_idx
            if self.start_tsv_idx >= self.tsv_patch_size:# or self.start_tsv_idx < 1:
                print("wrongly set the data download time")
                raise ValueError
            if self.caption_folder:
                # try:
                if self.do_azcopy:
                # except:
                    self.valid_ids = [
                        os.path.join(img_folder, "output_part-" + "{:0>5d}".format(i)) for i in range(max_num_records)
                        ]
                    # self.valid_ids = [
                    #     os.path.join(img_folder, "output_part-" + "{:0>5d}".format(i)) for i in [4,5] #[4,5]
                    #     ]
                else:
                    self.valid_ids = [folder.rstrip("/") for folder in glob(img_folder + "/*/")]
                self.num_records = len(self.valid_ids)
                if not self.num_records:
                    print("zero data records, please check the data path")
                    raise ValueError
                self.sample_ids = self.valid_ids
                self.max_num = self.num_records * 100000 * self.max_num_tsv_per_record
            else:
                print("should provide caption folder")
                raise ValueError
        else:
            parquet_paths = []
            for root, _, files in os.walk(os.path.abspath(img_folder)):
                for file in files:
                    if file.endswith(".parquet"):
                        parquet_paths.append(os.path.join(root, file))
            # parquet_paths = parquet_paths[:32]
            # self.origin_parquet_paths = parquet_paths
            # self.parquet_paths = self.origin_parquet_paths
            # self.num_records = len(parquet_paths) 
            self.valid_ids = parquet_paths
            self.sample_ids = self.valid_ids
            self.num_records = len(self.valid_ids) 
            self.max_num = self.num_records * 1000
        self.first_stage_key = first_stage_key
        self.cond_stage_key = cond_stage_key

        self.preprocess = None
        if preprocess is not None:
            self.preprocess = preprocess
        else:
            if clip_model is not None: # "ViT-L/14"
                _,  self.preprocess = clip.load(clip_model) #, device=self.device)  # RN50x64 
        
        self.do_flip = do_flip
        if self.do_flip:
            self.flip = transforms.RandomHorizontalFlip(p=flip_p)
        self.min_crop_f = min_crop_f
        self.max_crop_f = max_crop_f
        assert(max_crop_f <= 1.)
        self.center_crop = not random_crop
        self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)

    # def __len__(self):
    #     # return self.num_records 
    #     return self.max_num
    
    def __iter__(self):
        # if self.caption_folder:
        if self.img_txt_same_file:
            return self.parquet_iter()
        else:
            return self.parquet_tsv_iter()
        # else:
        #     return self.parquet_iter()

    def parquet_iter(self):
        print("this shard on GPU {}: {}".format(_get_distributed_settings()[1], len(self.sample_ids)))
        idx = 0
        while idx >= 0:
            for parqut_path in self.sample_ids: #parquet_paths:
                df = pd.read_parquet(parqut_path)
                for file_idx in range(len(df)):
                    img_code = df.jpg.iloc[file_idx]
                    if img_code:
                        try:
                            image = self.generate_img(img_code)
                        except:
                            # print("can' t open")
                            continue
                        if image is None:
                            continue
                        # except:
                        #     continue
                        try:
                            text = df.caption.iloc[file_idx]
                        except:
                            try:
                                text = df.TEXT.iloc[file_idx]
                            except:
                                continue
                        if text is None:
                            continue
                        example = {}
                        example[self.first_stage_key] = image
                        example[self.cond_stage_key] = text
                        yield example
                del df
            print("has gone over the whole dataset, need to start next round")
            idx += 1

    def parquet_tsv_iter(self):
        print("this shard on GPU {}: {}".format(_get_distributed_settings()[1], len(self.sample_ids)))
        idx = 0
        # first_part = True
        while idx >= 0:
            for subfolder in self.sample_ids: #folders:
                parquet_name = os.path.basename(subfolder).split("output_")[1]
                caption_path = os.path.join(
                    self.caption_folder,
                    parquet_name + ".parquet"
                    )
                if self.do_azcopy:
                    tsv_paths = [
                        os.path.join(subfolder, "{:0>6d}.tsv".format(i)) for i in range(self.max_num_tsv_per_record)
                    ]
                    # tsv_paths = self.check_and_download(caption_path, tsv_paths, subfolder, parquet_name, first_part = first_part)
                    self.download_data(caption_path, tsv_paths[:self.tsv_patch_size], subfolder, parquet_name, first_part=True)
                    download_time = 1
                else:
                    tsv_paths = glob(subfolder + "/*.tsv")
                par_data = pd.read_parquet(caption_path) # faster
                # for image_path in self.tsv_paths[subfolder]:
                for rank, image_path in enumerate(tsv_paths):
                    print("start opening {}".format(image_path))
                    with open(image_path, "r") as f:
                        # for line_ in tqdm(f.readlines()): 
                        lines = f.readlines()
                    print("successfully open and read {}".format(image_path))
                    if self.remove_data_from_cluster:
                        self.remove_data(image_path)
                    if self.do_azcopy and rank == self.start_tsv_idx + (download_time-1) * self.tsv_patch_size:
                        self.download_data(
                            caption_path, 
                            tsv_paths[self.tsv_patch_size * download_time: self.tsv_patch_size * (download_time + 1)], 
                            subfolder, parquet_name, 
                            first_part=False
                            )
                        download_time += 1
                        print("download time: {}".format(download_time))
                    # for line_ in f.readlines(): 
                    for i, line_ in enumerate(lines): 
                        # print("the {}th line".format(i))
                        # line_ = f.readline()
                        idx, img_code = [str_.strip() for str_ in line_.split("\t")]
                        # if not list_[1].startswith("/"):
                        #     continue
                        try:
                            # img_code = base64.b64decode(img_code) #.decode()
                            # image = self.generate_img(img_code)
                            image = self.generate_img(base64.b64decode(img_code))
                            if image is None:
                                continue
                        except:
                            continue
                        example = dict()
                        example[self.first_stage_key] = image
                        # idx = int(idx)
                        text = par_data.iloc[int(idx)].TEXT
                        example[self.cond_stage_key] = text
                        example["data"] = "\t".join([
                            parquet_name,
                            idx, 
                            img_code, 
                            text
                        ])
                        yield example
                        # if i == 70000:
                        #     break
                del par_data
                if self.remove_data_from_cluster:
                    self.remove_data(caption_path)
                # if self.remove_data_from_cluster:
                #     self.remove_data(caption_path)
                #     self.remove_data(subfolder)
            print("has gone over the whole dataset, need to start next round")
            idx += 1
    
    def generate_img(self, img_code):
        image = Image.open(BytesIO(img_code))
        if self.preprocess:
            # pil_image = Image.open(img_path)
            image = self.preprocess(image)#.unsqueeze(0)#.to(device)
            return image
        else:
            image = image.convert("RGB")
            image = np.array(image).astype(np.uint8)
            if image.shape[0] < self.size or image.shape[1] < self.size:
                return None
            # crop
            min_side_len = min(image.shape[:2])
            crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
            crop_side_len = int(crop_side_len)
            if self.center_crop:
                self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
            else:
                self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
            image = self.cropper(image=image)["image"] # ?
            # rescale
            image = self.image_rescaler(image=image)["image"]
            # flip
            if self.do_flip:
                image = self.flip(Image.fromarray(image))
                image = np.array(image).astype(np.uint8)
            return (image/127.5 - 1.0).astype(np.float32)
    
    def check_and_download(self, caption_path, tsv_paths, subfolder, parquet_name):
        if not os.path.exists(caption_path):
            try:
                os.makedirs(self.caption_folder, exist_ok=True)
                self.azcopy_from_blob(
                    self.caption_blob_name,
                    parquet_name + ".parquet",
                    self.caption_folder,
                )
            except:
                print("fail to download caption file from blob!")
                raise ValueError                
        if not len(tsv_paths):
            try:
                os.makedirs(self.img_folder, exist_ok=True)
                self.azcopy_from_blob(
                    self.image_blob_name,
                    os.path.basename(subfolder),
                    self.img_folder,
                ) 
                return glob(subfolder + "/*.tsv")
            except:
                print("fail to download image tsv file from blob!")
                raise ValueError
        return tsv_paths

    def download_data(self, caption_path, tsv_paths, subfolder, parquet_name, first_part=True):
        if not os.path.exists(caption_path) and first_part:
            try:
                os.makedirs(self.caption_folder, exist_ok=True)
                self.azcopy_from_blob(
                    self.caption_blob_name,
                    parquet_name + ".parquet",
                    self.caption_folder,
                    first_part=first_part,
                )
            except:
                print("fail to download caption file from blob!")
                raise ValueError 
        os.makedirs(subfolder, exist_ok=True)               
        for tsv_path in tsv_paths:
            if not os.path.exists(tsv_path):
                try:    
                    self.azcopy_from_blob(
                        self.image_blob_name,
                        os.path.join(os.path.basename(subfolder), os.path.basename(tsv_path)),
                        subfolder,
                        first_part=first_part,
                    ) 
                    # return glob(subfolder + "/*.tsv")
                except:
                    print("fail to download image tsv file from blob to {}!".format(tsv_path))
                    raise ValueError
        # return tsv_paths

    def azcopy_from_blob(self, subfolder = "laion-5b", name = "output_part-00005", destination = "/scratch", first_part=True):
        command = 'sudo azcopy cp '
        if self.blob_folder is None:
            print("The blob storage for laion data is not provided!")
            raise ValueError
        if self.sas_token is None:
            print("The sas token for laion data is not provided!")
            raise ValueError
        file = self.blob_folder + "/" + subfolder + "/" + name
        # file = "https://itpsea4data.blob.core.windows.net/v-yukangyang/data/data/laion-5b/output_part-00005"
        # sas_token = "?sv=2021-08-06&st=2023-01-05T06%3A47%3A56Z&se=2023-01-11T06%3A47%3A00Z&sr=c&sp=racwl&sig=aAHHp4NhaVWuR7lnhT8GJqZicWvbQia%2FflKmoly4x0A%3D"
        # sas_token = "?sv=2021-08-06&st=2023-01-05T06%3A17%3A31Z&se=2023-01-06T06%3A17%3A31Z&sr=c&sp=raccl&sig=0gRoqwgEqeDzZHchhduf9N9jVHLzAnX5iPC%2FOb%2F%2Bk9Q%3D"
        # destination = "/scratch" 
        # sas_token = "?sv=2021-08-06&st=2023-01-05T06%3A17%3A31Z&se=2023-01-06T06%3A17%3A31Z&sr=c&sp=raccl&sig=0gRoqwgEqeDzZHchhduf9N9jVHLzAnX5iPC%2FOb%2F%2Bk9Q%3D"
        # file_str = '"' + file + self.sas_token + '"' 
        file_str = file + self.sas_token
        command_line = command + file_str + ' ' + destination + ' --recursive'
        command_list = command_line.split(" ")
        if first_part:
            subprocess.call(
                command_list
            )
            print("azcopy {} successfully!".format(file))
        else:
            # os.popen(command_line)

            # out_temp = tempfile.SpooledTemporaryFile(bufsize=10*1000)
            # with tempfile.SpooledTemporaryFile() as out_temp:
            #     fileno = out_temp.fileno()
            #     p = subprocess.Popen(command_list, stdout=fileno, stderr=fileno, close_fds=True, shell=True)
            #     p.communicate()
            # p = subprocess.Popen(command_list, close_fds=True, shell=True)
            # p.communicate()
            # p = subprocess.Popen(command_list, close_fds=True)
            # p.communicate()
            subprocess.Popen(command_list)
            # p = subprocess.Popen(command_list, close_fds=True, stdout=subprocess.PIPE)
            print("start downloading {}".format(file))
            # for line in iter(p.stdout.readline, b''):
            #     print(line)     
            # # print to stdout immediately
            # p.stdout.close()
        
    def remove_data(self, file =  "/scratch/output_part-00005"):
        command = "sudo rm -rf "
        command_list = (command + file).split(" ")
        subprocess.call(
            command_list
        )
        print("remove {} from the cluster successfully!".format(file))