Spaces:
Runtime error
Runtime error
File size: 27,125 Bytes
0902a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
import os #yaml, pickle, shutil, tarfile,
from glob import glob
import cv2
import albumentations
import PIL
import numpy as np
import torchvision.transforms.functional as TF
# from omegaconf import OmegaConf
from functools import partial
from PIL import Image
from torch.utils.data import Dataset #, Subset
import pandas as pd
from torchvision import transforms
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
from skimage import io
from tqdm import tqdm
import base64
from io import BytesIO
from ldm.data.base import Txt2ImgIterableBaseDataset
import multiprocessing as mp
from bisect import bisect_left, bisect_right
import omegaconf
import time
import json
from torch.utils.data.dataloader import _get_distributed_settings
class LAIONBase(Dataset):
def __init__(self, img_folder, caption_folder=None,
recollect_data_info = False,
# indices_file = None,
first_stage_key = "jpg", cond_stage_key = "txt", do_flip = False,
size=None, degradation=None,
downscale_f=4, min_crop_f=0.5, max_crop_f=1., flip_p=0.5,
random_crop=True):
"""
LAION Dataloader
Performs following ops in order:
1. crops a crop of size s from image either as random or center crop
2. resizes crop to size with cv2.area_interpolation
# 3. degrades resized crop with degradation_fn
:param size: resizing to size after cropping
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
:param downscale_f: Low Resolution Downsample factor
:param min_crop_f: determines crop size s,
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
:param max_crop_f: ""
:param data_root:
:param random_crop:
"""
self.first_stage_key = first_stage_key
self.cond_stage_key = cond_stage_key
self.root = img_folder.split("/laion")[0]
self.images = []
self.texts = []
self.paired_data = []
self.parquet_info = {}
# self.load_from_origin_data(caption_folder)
# self.load_data(img_folder, caption_folder)
# self.load_from_parquet(img_folder)
data_info_file = os.path.join(img_folder, "data_info.json")
# if os.path.exists(data_info_file):
collect_data_info = True
if not recollect_data_info:
try:
with open(data_info_file, "r") as f:
# f.write(json.dump(self.data_info))
self.data_info = json.loads(f.read())
collect_data_info = False
except:
print(
"fail to load data info from {}".format(data_info_file)
)
if collect_data_info:
print(
"start to collect data info to {}".format(data_info_file)
)
self.data_info = []
self.load_data_par(img_folder)
with open(data_info_file, "w") as f:
f.write(json.dumps(self.data_info))
# if indices_file is None or not os.path.exists(indices_file):
# self.data_info = self.data_info[:50000]
self.data_info = self.data_info[:5000]
self.indices = range(self.__len__())
# else:
# with open(indices_file, "r") as f:
# self.indices = [int(s.strip()) for s in f.readlines()]
# return
self.do_flip = do_flip
if self.do_flip:
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
# self.base = self.get_base()
assert size
self.size = size
self.min_crop_f = min_crop_f
self.max_crop_f = max_crop_f
assert(max_crop_f <= 1.)
self.center_crop = not random_crop
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
# assert (size / downscale_f).is_integer()
# self.LR_size = int(size / downscale_f)
# self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
# if degradation == "bsrgan":
# self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
# elif degradation == "bsrgan_light":
# self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
# else:
# interpolation_fn = {
# "cv_nearest": cv2.INTER_NEAREST,
# "cv_bilinear": cv2.INTER_LINEAR,
# "cv_bicubic": cv2.INTER_CUBIC,
# "cv_area": cv2.INTER_AREA,
# "cv_lanczos": cv2.INTER_LANCZOS4,
# "pil_nearest": PIL.Image.NEAREST,
# "pil_bilinear": PIL.Image.BILINEAR,
# "pil_bicubic": PIL.Image.BICUBIC,
# "pil_box": PIL.Image.BOX,
# "pil_hamming": PIL.Image.HAMMING,
# "pil_lanczos": PIL.Image.LANCZOS,
# }[degradation]
# self.pil_interpolation = degradation.startswith("pil_")
# if self.pil_interpolation:
# self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
# else:
# self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
# interpolation=interpolation_fn)
def __len__(self):
return len(self.data_info)
# if len(self.images):
# return len(self.images)
# elif len(self.paired_data):
# self.ranges = []
# num = 0
# for imgs, _ in self.paired_data:
# num += len(imgs)
# self.ranges.append(num)
# return num
def load_from_origin_data(self, folder):
# folder = "/home/v-yukangyang/data/stable-diffusion-v2/v-yukangyang/data/laion_aesthetics/laion_aesthetics_6.25+"
# folder = "/home/v-yukangyang/data/stable-diffusion-v2/v-yukangyang/data/data/nl/output_part-00000/"
valid_num = 0
store_processed_folder = os.path.join("./data", os.path.basename(folder))
if not os.path.exists(store_processed_folder):
os.makedirs(store_processed_folder)
text_list = []
image_list = []
image_path = os.path.join(store_processed_folder, "images.npy")
text_path = os.path.join(store_processed_folder, "prompts.txt")
if not os.path.exists(image_path) or not os.path.exists(text_path):
for file_name in glob(folder + "/*"):
if file_name.endswith(".parquet"):
data = pd.read_parquet(file_name)
# elif file_name.endswith(".tsv"):
# data = pd.read_csv(file_name,sep='\t')
else:
continue
for idx, row in tqdm(data.iterrows()):
try:
img= row.URL #IMAGEPATH #assumes that the df has the column IMAGEPATH
txt = row.TEXT
image = io.imread(img)
except:
continue
if len(image.shape) == 2:
image = Image.fromarray(image)
image = image.convert("RGB")
image = np.array(image).astype(np.uint8)
image_list.append(image)
text_list.append(txt)
valid_num += 1
# if idx == 128:
# break
del data
self.images = np.array(image_list)
self.texts = text_list
with open(text_path, "w") as f:
f.writelines([text + "\n" for text in text_list])
np.save(image_path, self.images)
else:
self.images = np.load(image_path,allow_pickle=True)
with open(text_path, "r") as f:
self.texts = [line.rstrip() for line in f.readlines()]
def load_from_tsv(self, image_path, original_data):
idx_list = []
with open(image_path, "r") as f:
for line_ in tqdm(f.readlines()):
list_ = line_.split("\t")
# if not list_[1].startswith("/"):
# continue
img = list_[1]
idx = int(list_[0])
idx_list.append(idx)
code_ = base64.b64decode(img) #.decode()
image = Image.open(BytesIO(code_)).convert("RGB")
image = np.array(image).astype(np.uint8)
text = original_data.iloc[idx].TEXT
self.images.append(image)
self.texts.append(text)
def load_data(self, img_folder, caption_folder):
# par_data = pd.read_parquet(caption_folder) # faster
for subfolder in glob(img_folder + "/*"):
if os.path.isdir(subfolder):
caption_path = os.path.join(
caption_folder,
os.path.basename(subfolder).lstrip("output_") + ".parquet"
)
par_data = pd.read_parquet(caption_path) # faster
# num_items = par_data.num_rows
imgstr_list = []
# for img_file in glob(subfolder + "/*.tsv"):
# # self.load_from_tsv(img_file, par_data)
# with open(img_file, "r") as f:
# imgstr_list.extend(f.readlines())
tsv_paths = glob(subfolder + "/*.tsv")
def merge_(item):
imgstr_list.extend(item)
def load_(path):
with open(path, "r") as f:
return f.readlines()
p = mp.Pool(30)
p.map_async(load_, tsv_paths, callback=merge_)
p.close()
p.join()
self.paired_data.append([imgstr_list, par_data])
del par_data
def load_from_parquet(self, parquet_path):
df = pd.read_parquet(parquet_path)
# rows = df.num_rows
print(parquet_path + " is successfully loaded")
valid_inds = list(df[df.jpg.notnull()].index)
info_lists = list(zip(
[parquet_path] * len(valid_inds), # image path
[parquet_path] * len(valid_inds), # text path
valid_inds
))
# return (list(df.jpg), list(df.caption))
# return (parquet_path, len(df))
return info_lists
# self.images = []
# self.texts = []
# for idx in range(rows):
# img = df.iloc[idx].jpg
# if img:
# image = Image.open(BytesIO(img)).convert("RGB")
# image = np.array(image).astype(np.uint8)
# text = df.iloc[idx].caption
# self.images.append(image)
# self.texts.append(text)
# del df
def merge_data(self, items):
for item in items:
# self.images.extend(item[0])
# self.texts.extend(item[1])
self.data_info.extend(item)
# self.data_info.update(dict(items))
def load_data_par(self, folder):
# if isinstance(folder, list) or isinstance(folder, omegaconf.listconfig.ListConfig):
# parquet_paths = []
# for f_ in folder:
# parquet_paths.extend(glob(f_ + "/*.parquet"))
# else:
# parquet_paths = glob(folder + "/*.parquet")
parquet_paths = []
for root, _, files in os.walk(os.path.abspath(folder)):
for file in files:
if file.endswith(".parquet"):
parquet_paths.append(os.path.join(root, file))
parquet_paths = glob(folder + "/*/*.parquet")
# parquet_paths = parquet_paths[:40]
# for parquet_path in tqdm(parquet_paths):
# df = pd.read_parquet(parquet_path)
# # self.images.extend(list(df.jpg))
# # self.texts.extend(list(df.caption))
# del df
bs = 20
iterables = [
parquet_paths[i:i + bs] for i in range(0, len(parquet_paths), bs)
]
# results = p.map_async(read_imgs,
# ["/home/v-yukangyang/data/stable-diffusion-v2/v-yukangyang/data/data/000001.tsv", "/home/v-yukangyang/data/stable-diffusion-v2/v-yukangyang/data/data/000000.tsv"])
for iterable_ in tqdm(iterables):
p = mp.Pool(20)
p.map_async(self.load_from_parquet, iterable_, callback=self.merge_data)
# p.map_async(pd.read_parquet, iterable_)
# p.join()
p.close()
p.join()
# time.sleep(2)
# def collect_par_info():
def __getitem__(self, i):
example = dict()
# example[self.first_stage_key] = np.random.randn(self.size, self.size, 3)
# example[self.cond_stage_key] = "diffusion model"
# return example
# example = self.base[i]
# # open image file
# image = Image.open(example["file_path_"])
index_ = self.indices[i]
imgfile_name, textfile_name, file_idx = self.data_info[index_]
imgfile_name = imgfile_name.replace("/scratch", self.root)
textfile_name = textfile_name.replace("/scratch", self.root)
pre_t = time.time()
if imgfile_name.endswith(".parquet"):
df = pd.read_parquet(imgfile_name)
# print("get image byte", time.time() - pre_t)
img = df.jpg.iloc[file_idx]
# print("get image byte", time.time() - pre_t)
elif imgfile_name.endswith(".tsv"):
with open(imgfile_name, "r") as f:
line_ = f.readlines()[file_idx]
file_idx, img = line_.split("\t")
img = base64.b64decode(img)
file_idx = int(file_idx)
try:
image = Image.open(BytesIO(img)).convert("RGB")
image = np.array(image).astype(np.uint8)
# print("image load", time.time() - pre_t)
except:
return self.__getitem__(np.random.randint(0, len(self.indices)))
# if isinstance()
# if self.images:
# img = self.images[index_]
# try:
# image = Image.open(BytesIO(img)).convert("RGB")
# image = np.array(image).astype(np.uint8)
# except:
# return self.__getitem__(np.random.randint(0, len(self.indices)))
# example[self.cond_stage_key] = self.texts[index_]
# elif self.paired_data:
# sec_ = bisect_right(self.ranges, index_)
# imgs, texts = self.paired_data[sec_]
# index_sec = index_ - self.ranges[sec_-1] if sec_ != 0 else index_
# line_ = imgs[index_sec].strip()
# list_ = line_.split("\t")
# img = list_[1]
# idx_ = int(list_[0])
# try:
# code_ = base64.b64decode(img) #.decode()
# image = Image.open(BytesIO(code_)).convert("RGB")
# image = np.array(image).astype(np.uint8)
# except:
# return self.__getitem__(np.random.randint(0, len(self.indices)))
# example[self.cond_stage_key] = texts[idx_]
# if len(image.shape) == 2:
# image = Image.fromarray(image)
# # if not image.mode == "RGB":
# image = image.convert("RGB")
# image = np.array(image).astype(np.uint8)
if image.shape[0] < self.size or image.shape[1] < self.size:
return self.__getitem__(np.random.randint(0, len(self.indices)))
# random crop
min_side_len = min(image.shape[:2])
# if min_side_len == 0:
# return self.__getitem__(np.random.randint(0, len(self.indices)))
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
crop_side_len = int(crop_side_len)
if self.center_crop:
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
else:
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
image = self.cropper(image=image)["image"] # ?
# if min(image.shape[:2]) == 0:
# aa = 1
# rescale
image = self.image_rescaler(image=image)["image"]
# flip
if self.do_flip:
image = self.flip(Image.fromarray(image))
image = np.array(image).astype(np.uint8)
# # degradation to get the low resolution images
# if self.pil_interpolation:
# image_pil = PIL.Image.fromarray(image)
# LR_image = self.degradation_process(image_pil)
# LR_image = np.array(LR_image).astype(np.uint8)
# else:
# LR_image = self.degradation_process(image=image)["image"]
# # store to example
# example["image"] = (image/127.5 - 1.0).astype(np.float32) #[-1, 1]
# example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32) #[-1, 1]
example[self.first_stage_key] = (image/127.5 - 1.0).astype(np.float32)
# print("image", time.time() - pre_t)
pre_t = time.time()
if imgfile_name != textfile_name:
if textfile_name.endswith(".parquet"):
df = pd.read_parquet(textfile_name)
else:
print(
"the format {} of the text file is not supported".format(
os.path.splitext(imgfile_name)[1]
)
)
raise ValueError
try:
text = df.TEXT.iloc[file_idx]
except:
try:
text = df.caption.iloc[file_idx]
except:
raise ValueError
example[self.cond_stage_key] = text
# Sprint("text (text load)", time.time() - pre_t)
return example
class LAIONTrain(LAIONBase):
def __init__(self, store_folder, *args, ratio=0.7, **kwargs):
super().__init__(*args, **kwargs)
# store_folder = os.path.join("./data", os.path.basename(folder))
if not os.path.exists(os.path.join(store_folder, "train.txt")):
rand_inds = np.random.permutation(self.__len__())
self.indices = rand_inds[:int(len(rand_inds) * ratio)]
rand_inds = [str(i) + "\n" for i in rand_inds]
with open(os.path.join(store_folder, "train.txt"), "w") as f:
f.writelines(rand_inds[:int(len(rand_inds) * ratio)])
with open(os.path.join(store_folder, "val.txt"), "w") as f:
f.writelines(rand_inds[int(len(rand_inds) * ratio):])
else:
with open(os.path.join(store_folder, "train.txt"), "r") as f:
self.indices = [int(s.strip()) for s in f.readlines()]
# def get_base(self):
# with open("data/imagenet_train_hr_indices.p", "rb") as f:
# indices = pickle.load(f)
# dset = ImageNetTrain(process_images=False,)
# return Subset(dset, indices)
class LAIONValidation(LAIONBase):
def __init__(self, store_folder, *args, **kwargs):
super().__init__(*args, **kwargs)
# store_folder = os.path.join("./data", os.path.basename(folder))
if not os.path.exists(os.path.join(store_folder, "val.txt")):
raise ValueError
else:
with open(os.path.join(store_folder, "val.txt"), "r") as f:
self.indices = [int(s.strip()) for s in f.readlines()]
# def get_base(self):
# with open("data/imagenet_val_hr_indices.p", "rb") as f:
# indices = pickle.load(f)
# dset = ImageNetValidation(process_images=False,)
# return Subset(dset, indices)
class LAIONIterableBaseDataset(Txt2ImgIterableBaseDataset):
'''
Define an interface to make the IterableDatasets for text2img data chainable
'''
def __init__(self, img_folder, caption_folder=None, size=256,
first_stage_key = "jpg", cond_stage_key = "txt", do_flip = False,
min_crop_f=0.5, max_crop_f=1., flip_p=0.5,
random_crop=True):
assert size
super().__init__(size=size)
self.caption_folder = caption_folder
if self.caption_folder:
# self.origin_folders = glob(img_folder + "/*/") # "output_part_000000"
self.valid_ids = glob(img_folder + "/*/")
self.origin_tsv_paths = {
subfolder: glob(subfolder + "/*.tsv") for subfolder in self.valid_ids #self.origin_folders
}
num = 0
self.tsv_folder_idx = {}
# self.tsv_nums = []
for key, value in self.origin_tsv_paths.items():
num += len(value)
self.tsv_folder_idx[num] = key
# self.tsv_nums.append(num)
# self.num_records = len(self.origin_folders)
# self.folders = self.origin_folders
self.num_records = len(self.valid_ids)
self.sample_ids = self.valid_ids
self.tsv_paths = self.origin_tsv_paths # to be deprecated
self.max_num = self.num_records * 100000
else:
parquet_paths = []
for root, _, files in os.walk(os.path.abspath(img_folder)):
for file in files:
if file.endswith(".parquet"):
parquet_paths.append(os.path.join(root, file))
parquet_paths = parquet_paths[:170]
# self.origin_parquet_paths = parquet_paths
# self.parquet_paths = self.origin_parquet_paths
# self.num_records = len(parquet_paths)
self.valid_ids = parquet_paths
self.sample_ids = self.valid_ids
self.num_records = len(self.valid_ids)
self.max_num = self.num_records * 1000
self.first_stage_key = first_stage_key
self.cond_stage_key = cond_stage_key
# self.num_records = len(self.folders)
# self.num_records = np.sum([
# len(value_) for value_ in self.tsv_paths.values()
# ])
self.do_flip = do_flip
if self.do_flip:
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
# self.base = self.get_base()
# self.size = size
self.min_crop_f = min_crop_f
self.max_crop_f = max_crop_f
assert(max_crop_f <= 1.)
self.center_crop = not random_crop
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
# self.num_records = num_records
# self.valid_ids = valid_ids
# print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
# def __len__(self):
# # return self.num_records
# return self.max_num
def __iter__(self):
if self.caption_folder:
return self.parquet_tsv_iter()
else:
return self.parquet_iter()
def parquet_iter(self):
print("this shard on GPU {}: {}".format(_get_distributed_settings()[1], len(self.sample_ids)))
idx = 0
while idx >= 0:
for parqut_path in self.sample_ids: #parquet_paths:
df = pd.read_parquet(parqut_path)
for file_idx in range(len(df)):
img_code = df.jpg.iloc[file_idx]
if img_code:
try:
image = self.generate_img(img_code)
except:
# print("can' t open")
continue
if image is None:
continue
# except:
# continue
try:
text = df.caption.iloc[file_idx]
except:
try:
text = df.TEXT.iloc[file_idx]
except:
continue
if text is None:
continue
example = {}
example[self.first_stage_key] = image
example[self.cond_stage_key] = text
yield example
del df
print("has gone over the whole dataset, need to start next round")
idx += 1
def parquet_tsv_iter(self):
for subfolder in self.sample_ids: #folders:
caption_path = os.path.join(
self.caption_folder,
os.path.basename(subfolder).lstrip("output_") + ".parquet"
)
par_data = pd.read_parquet(caption_path) # faster
for image_path in self.tsv_paths[subfolder]:
with open(image_path, "r") as f:
for line_ in tqdm(f.readlines()): # shuffle could be done
# line_ = f.readline()
idx, img_code = line_.split("\t")
# if not list_[1].startswith("/"):
# continue
try:
img_code = base64.b64decode(img_code) #.decode()
image = self.generate_img(img_code)
if not image:
continue
except:
continue
example = dict()
example[self.first_stage_key] = image
idx = int(idx)
text = par_data.iloc[idx].TEXT
example[self.cond_stage_key] = text
yield example
del par_data
def generate_img(self, img_code):
image = Image.open(BytesIO(img_code)).convert("RGB")
image = np.array(image).astype(np.uint8)
if image.shape[0] < self.size or image.shape[1] < self.size:
return None
# crop
min_side_len = min(image.shape[:2])
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
crop_side_len = int(crop_side_len)
if self.center_crop:
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
else:
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
image = self.cropper(image=image)["image"] # ?
# rescale
image = self.image_rescaler(image=image)["image"]
# flip
if self.do_flip:
image = self.flip(Image.fromarray(image))
image = np.array(image).astype(np.uint8)
return (image/127.5 - 1.0).astype(np.float32)
# pass
|