import torch import numpy as np import gradio as gr from PIL import Image from omegaconf import OmegaConf from pathlib import Path from vocoder.hifigan.modules import VocoderHifigan from ldm.models.diffusion.ddim import DDIMSampler from ldm.util import instantiate_from_config from wav_evaluation.models.CLAPWrapper import CLAPWrapper SAMPLE_RATE = 16000 torch.set_grad_enabled(False) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") def initialize_model(config, ckpt): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False) model = model.to(device) model.cond_stage_model.to(model.device) model.cond_stage_model.device = model.device print(model.device,device,model.cond_stage_model.device) sampler = DDIMSampler(model) return sampler sampler = initialize_model('configs/text_to_audio/txt2audio_args.yaml', 'useful_ckpts/ta40multi_epoch=000085.ckpt') vocoder = VocoderHifigan('vocoder/logs/hifi_0127',device=device) clap_model = CLAPWrapper('useful_ckpts/CLAP/CLAP_weights_2022.pth','useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available()) def select_best_audio(prompt,wav_list): text_embeddings = clap_model.get_text_embeddings([prompt]) score_list = [] for data in wav_list: sr,wav = data audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True) score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy() score_list.append(score) max_index = np.array(score_list).argmax() print(score_list,max_index) return wav_list[max_index] def txt2audio(sampler,vocoder,prompt, seed, scale, ddim_steps, n_samples=1, W=624, H=80): prng = np.random.RandomState(seed) start_code = prng.randn(n_samples, sampler.model.first_stage_model.embed_dim, H // 8, W // 8) start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32) uc = None if scale != 1.0: uc = sampler.model.get_learned_conditioning(n_samples * [""]) c = sampler.model.get_learned_conditioning(n_samples * [prompt]) shape = [sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x) samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=c, batch_size=n_samples, shape=shape, verbose=False, unconditional_guidance_scale=scale, unconditional_conditioning=uc, x_T=start_code) x_samples_ddim = sampler.model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1] wav_list = [] for idx,spec in enumerate(x_samples_ddim): wav = vocoder.vocode(spec) wav_list.append((SAMPLE_RATE,wav)) best_wav = select_best_audio(prompt,wav_list) return best_wav def predict(prompt, ddim_steps, num_samples, scale, seed): melbins,mel_len = 80,624 with torch.no_grad(): result = txt2audio( sampler=sampler, vocoder=vocoder, prompt=prompt, seed=seed, scale=scale, ddim_steps=ddim_steps, n_samples=num_samples, H=melbins, W=mel_len ) return result with gr.Blocks() as demo: with gr.Row(): gr.Markdown("## Make-An-Audio: Text-to-Audio Generation") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt: Input your text here:") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider( label="Candidates", minimum=1, maximum=10, value=3, step=1) # num_samples = 1 ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=150, value=100, step=1) scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=4.0, value=1.5, step=0.1 ) seed = gr.Slider( label="Seed", minimum=0, maximum=2147483647, step=1, value=44, ) with gr.Column(): # audio_list = [] # for i in range(int(num_samples)): # audio_list.append(gr.outputs.Audio()) outaudio = gr.Audio() run_button.click(fn=predict, inputs=[ prompt,ddim_steps, num_samples, scale, seed], outputs=[outaudio])# inputs的参数只能传gr.xxx with gr.Row(): with gr.Column(): gr.Examples( examples = [['a dog barking and a bird chirping',100,3,1.5,55],['fireworks pop and explode',100,3,1.5,55], ['piano and violin plays',100,3,1.5,55],['wind thunder and rain falling',100,3,1.5,55],['music made by drum kit',100,3,1.5,55]], inputs = [prompt,ddim_steps, num_samples, scale, seed], outputs = [outaudio] ) with gr.Column(): pass demo.launch(share=True)