Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						7b6cabe
	
1
								Parent(s):
							
							aafb3b6
								
Upload 198 files
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- README.md +4 -4
 - app.py +141 -0
 - configs/text_to_audio/clap_args.yaml +26 -0
 - configs/text_to_audio/hifigan_args.yaml +47 -0
 - configs/text_to_audio/txt2audio_args.yaml +78 -0
 - ldm/__pycache__/util.cpython-38.pyc +0 -0
 - ldm/__pycache__/util.cpython-39.pyc +0 -0
 - ldm/lr_scheduler.py +98 -0
 - ldm/models/__pycache__/autoencoder.cpython-38.pyc +0 -0
 - ldm/models/__pycache__/autoencoder.cpython-39.pyc +0 -0
 - ldm/models/__pycache__/autoencoder_multi.cpython-38.pyc +0 -0
 - ldm/models/autoencoder.py +474 -0
 - ldm/models/autoencoder_multi.py +201 -0
 - ldm/models/diffusion/__init__.py +0 -0
 - ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
 - ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
 - ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc +0 -0
 - ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc +0 -0
 - ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc +0 -0
 - ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc +0 -0
 - ldm/models/diffusion/__pycache__/ddpm_audio.cpython-38.pyc +0 -0
 - ldm/models/diffusion/__pycache__/ddpm_audio.cpython-39.pyc +0 -0
 - ldm/models/diffusion/__pycache__/ddpm_audio_inpaint.cpython-38.pyc +0 -0
 - ldm/models/diffusion/__pycache__/plms.cpython-38.pyc +0 -0
 - ldm/models/diffusion/__pycache__/plms.cpython-39.pyc +0 -0
 - ldm/models/diffusion/classifier.py +267 -0
 - ldm/models/diffusion/ddim.py +262 -0
 - ldm/models/diffusion/ddpm.py +1444 -0
 - ldm/models/diffusion/ddpm_audio.py +1262 -0
 - ldm/models/diffusion/ddpm_audio_inpaint.py +1081 -0
 - ldm/models/diffusion/plms.py +236 -0
 - ldm/modules/__pycache__/attention.cpython-38.pyc +0 -0
 - ldm/modules/__pycache__/attention.cpython-39.pyc +0 -0
 - ldm/modules/__pycache__/ema.cpython-38.pyc +0 -0
 - ldm/modules/__pycache__/ema.cpython-39.pyc +0 -0
 - ldm/modules/__pycache__/x_transformer.cpython-38.pyc +0 -0
 - ldm/modules/__pycache__/x_transformer.cpython-39.pyc +0 -0
 - ldm/modules/attention.py +261 -0
 - ldm/modules/diffusionmodules/__init__.py +0 -0
 - ldm/modules/diffusionmodules/__pycache__/__init__.cpython-38.pyc +0 -0
 - ldm/modules/diffusionmodules/__pycache__/__init__.cpython-39.pyc +0 -0
 - ldm/modules/diffusionmodules/__pycache__/custom_openaimodel.cpython-38.pyc +0 -0
 - ldm/modules/diffusionmodules/__pycache__/model.cpython-38.pyc +0 -0
 - ldm/modules/diffusionmodules/__pycache__/model.cpython-39.pyc +0 -0
 - ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-38.pyc +0 -0
 - ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-39.pyc +0 -0
 - ldm/modules/diffusionmodules/__pycache__/util.cpython-38.pyc +0 -0
 - ldm/modules/diffusionmodules/__pycache__/util.cpython-39.pyc +0 -0
 - ldm/modules/diffusionmodules/custom_openaimodel.py +368 -0
 - ldm/modules/diffusionmodules/model.py +835 -0
 
    	
        README.md
    CHANGED
    
    | 
         @@ -1,10 +1,10 @@ 
     | 
|
| 1 | 
         
             
            ---
         
     | 
| 2 | 
         
             
            title: Make An Audio
         
     | 
| 3 | 
         
            -
            emoji:  
     | 
| 4 | 
         
            -
            colorFrom:  
     | 
| 5 | 
         
            -
            colorTo:  
     | 
| 6 | 
         
             
            sdk: gradio
         
     | 
| 7 | 
         
            -
            sdk_version: 3. 
     | 
| 8 | 
         
             
            app_file: app.py
         
     | 
| 9 | 
         
             
            pinned: false
         
     | 
| 10 | 
         
             
            ---
         
     | 
| 
         | 
|
| 1 | 
         
             
            ---
         
     | 
| 2 | 
         
             
            title: Make An Audio
         
     | 
| 3 | 
         
            +
            emoji: 😻
         
     | 
| 4 | 
         
            +
            colorFrom: green
         
     | 
| 5 | 
         
            +
            colorTo: indigo
         
     | 
| 6 | 
         
             
            sdk: gradio
         
     | 
| 7 | 
         
            +
            sdk_version: 3.17.0
         
     | 
| 8 | 
         
             
            app_file: app.py
         
     | 
| 9 | 
         
             
            pinned: false
         
     | 
| 10 | 
         
             
            ---
         
     | 
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,141 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
            import gradio as gr
         
     | 
| 4 | 
         
            +
            from PIL import Image
         
     | 
| 5 | 
         
            +
            from omegaconf import OmegaConf
         
     | 
| 6 | 
         
            +
            from pathlib import Path
         
     | 
| 7 | 
         
            +
            from vocoder.hifigan.modules import VocoderHifigan
         
     | 
| 8 | 
         
            +
            from ldm.models.diffusion.ddim import DDIMSampler
         
     | 
| 9 | 
         
            +
            from ldm.util import instantiate_from_config
         
     | 
| 10 | 
         
            +
            from wav_evaluation.models.CLAPWrapper import CLAPWrapper
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            SAMPLE_RATE = 16000
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            torch.set_grad_enabled(False)
         
     | 
| 15 | 
         
            +
            device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def initialize_model(config, ckpt):
         
     | 
| 19 | 
         
            +
                config = OmegaConf.load(config)
         
     | 
| 20 | 
         
            +
                model = instantiate_from_config(config.model)
         
     | 
| 21 | 
         
            +
                model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                model = model.to(device)
         
     | 
| 24 | 
         
            +
                model.cond_stage_model.to(model.device)
         
     | 
| 25 | 
         
            +
                model.cond_stage_model.device = model.device
         
     | 
| 26 | 
         
            +
                print(model.device,device,model.cond_stage_model.device)
         
     | 
| 27 | 
         
            +
                sampler = DDIMSampler(model)
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                return sampler
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            sampler = initialize_model('configs/text_to_audio/txt2audio_args.yaml', 'useful_ckpts/ta40multi_epoch=000085.ckpt')
         
     | 
| 32 | 
         
            +
            vocoder = VocoderHifigan('vocoder/logs/hifi_0127',device=device)
         
     | 
| 33 | 
         
            +
            clap_model = CLAPWrapper('useful_ckpts/CLAP/CLAP_weights_2022.pth','useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available())
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            def select_best_audio(prompt,wav_list):
         
     | 
| 36 | 
         
            +
                text_embeddings = clap_model.get_text_embeddings([prompt])
         
     | 
| 37 | 
         
            +
                score_list = []
         
     | 
| 38 | 
         
            +
                for data in wav_list:
         
     | 
| 39 | 
         
            +
                    sr,wav = data
         
     | 
| 40 | 
         
            +
                    audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True)
         
     | 
| 41 | 
         
            +
                    score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy()
         
     | 
| 42 | 
         
            +
                    score_list.append(score)
         
     | 
| 43 | 
         
            +
                max_index = np.array(score_list).argmax()
         
     | 
| 44 | 
         
            +
                print(score_list,max_index)
         
     | 
| 45 | 
         
            +
                return wav_list[max_index]
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            def txt2audio(sampler,vocoder,prompt, seed, scale, ddim_steps, n_samples=1, W=624, H=80):
         
     | 
| 48 | 
         
            +
                prng = np.random.RandomState(seed)
         
     | 
| 49 | 
         
            +
                start_code = prng.randn(n_samples, sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
         
     | 
| 50 | 
         
            +
                start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
         
     | 
| 51 | 
         
            +
                
         
     | 
| 52 | 
         
            +
                uc = None
         
     | 
| 53 | 
         
            +
                if scale != 1.0:
         
     | 
| 54 | 
         
            +
                    uc = sampler.model.get_learned_conditioning(n_samples * [""])
         
     | 
| 55 | 
         
            +
                c = sampler.model.get_learned_conditioning(n_samples * [prompt])
         
     | 
| 56 | 
         
            +
                shape = [sampler.model.first_stage_model.embed_dim, H//8, W//8]  # (z_dim, 80//2^x, 848//2^x)
         
     | 
| 57 | 
         
            +
                samples_ddim, _ = sampler.sample(S=ddim_steps,
         
     | 
| 58 | 
         
            +
                                                    conditioning=c,
         
     | 
| 59 | 
         
            +
                                                    batch_size=n_samples,
         
     | 
| 60 | 
         
            +
                                                    shape=shape,
         
     | 
| 61 | 
         
            +
                                                    verbose=False,
         
     | 
| 62 | 
         
            +
                                                    unconditional_guidance_scale=scale,
         
     | 
| 63 | 
         
            +
                                                    unconditional_conditioning=uc,
         
     | 
| 64 | 
         
            +
                                                    x_T=start_code)
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                x_samples_ddim = sampler.model.decode_first_stage(samples_ddim)
         
     | 
| 67 | 
         
            +
                x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                wav_list = []
         
     | 
| 70 | 
         
            +
                for idx,spec in enumerate(x_samples_ddim):
         
     | 
| 71 | 
         
            +
                    wav = vocoder.vocode(spec)
         
     | 
| 72 | 
         
            +
                    wav_list.append((SAMPLE_RATE,wav))
         
     | 
| 73 | 
         
            +
                best_wav = select_best_audio(prompt,wav_list)
         
     | 
| 74 | 
         
            +
                return best_wav
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            def predict(prompt, ddim_steps, num_samples, scale, seed):
         
     | 
| 78 | 
         
            +
                melbins,mel_len = 80,624
         
     | 
| 79 | 
         
            +
                with torch.no_grad():
         
     | 
| 80 | 
         
            +
                    result = txt2audio(
         
     | 
| 81 | 
         
            +
                        sampler=sampler,
         
     | 
| 82 | 
         
            +
                        vocoder=vocoder,
         
     | 
| 83 | 
         
            +
                        prompt=prompt,
         
     | 
| 84 | 
         
            +
                        seed=seed,
         
     | 
| 85 | 
         
            +
                        scale=scale,
         
     | 
| 86 | 
         
            +
                        ddim_steps=ddim_steps,
         
     | 
| 87 | 
         
            +
                        n_samples=num_samples,
         
     | 
| 88 | 
         
            +
                        H=melbins, W=mel_len
         
     | 
| 89 | 
         
            +
                    )
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                return result
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
            with gr.Blocks() as demo:
         
     | 
| 95 | 
         
            +
                with gr.Row():
         
     | 
| 96 | 
         
            +
                    gr.Markdown("## Make-An-Audio: Text-to-Audio Generation")
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                with gr.Row():
         
     | 
| 99 | 
         
            +
                    with gr.Column():
         
     | 
| 100 | 
         
            +
                        prompt = gr.Textbox(label="Prompt: Input your text here:")
         
     | 
| 101 | 
         
            +
                        run_button = gr.Button(label="Run")
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                        
         
     | 
| 104 | 
         
            +
                        with gr.Accordion("Advanced options", open=False):
         
     | 
| 105 | 
         
            +
                            num_samples = gr.Slider(
         
     | 
| 106 | 
         
            +
                                label="Candidates", minimum=1, maximum=10, value=3, step=1)
         
     | 
| 107 | 
         
            +
                            # num_samples = 1
         
     | 
| 108 | 
         
            +
                            ddim_steps = gr.Slider(label="Steps", minimum=1,
         
     | 
| 109 | 
         
            +
                                                   maximum=150, value=100, step=1)
         
     | 
| 110 | 
         
            +
                            scale = gr.Slider(
         
     | 
| 111 | 
         
            +
                                label="Guidance Scale", minimum=0.1, maximum=4.0, value=1.5, step=0.1
         
     | 
| 112 | 
         
            +
                            )
         
     | 
| 113 | 
         
            +
                            seed = gr.Slider(
         
     | 
| 114 | 
         
            +
                                label="Seed",
         
     | 
| 115 | 
         
            +
                                minimum=0,
         
     | 
| 116 | 
         
            +
                                maximum=2147483647,
         
     | 
| 117 | 
         
            +
                                step=1,
         
     | 
| 118 | 
         
            +
                                value=44,
         
     | 
| 119 | 
         
            +
                            )
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                    with gr.Column():
         
     | 
| 122 | 
         
            +
                        # audio_list = []
         
     | 
| 123 | 
         
            +
                        # for i in range(int(num_samples)):
         
     | 
| 124 | 
         
            +
                        #     audio_list.append(gr.outputs.Audio())
         
     | 
| 125 | 
         
            +
                        outaudio = gr.Audio()
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                run_button.click(fn=predict, inputs=[
         
     | 
| 129 | 
         
            +
                                prompt,ddim_steps, num_samples, scale, seed], outputs=[outaudio])# inputs的���数只能传gr.xxx
         
     | 
| 130 | 
         
            +
                with gr.Row():
         
     | 
| 131 | 
         
            +
                    with gr.Column():
         
     | 
| 132 | 
         
            +
                        gr.Examples(
         
     | 
| 133 | 
         
            +
                                    examples = [['a dog barking and a bird chirping',100,3,1.5,55],['fireworks pop and explode',100,3,1.5,55],
         
     | 
| 134 | 
         
            +
                                                    ['piano and violin plays',100,3,1.5,55],['wind thunder and rain falling',100,3,1.5,55],['music made by drum kit',100,3,1.5,55]],
         
     | 
| 135 | 
         
            +
                                    inputs = [prompt,ddim_steps, num_samples, scale, seed],
         
     | 
| 136 | 
         
            +
                                    outputs = [outaudio]
         
     | 
| 137 | 
         
            +
                                    )
         
     | 
| 138 | 
         
            +
                    with gr.Column():
         
     | 
| 139 | 
         
            +
                        pass
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
            demo.launch(share=True)
         
     | 
    	
        configs/text_to_audio/clap_args.yaml
    ADDED
    
    | 
         @@ -0,0 +1,26 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # TEXT ENCODER CONFIG
         
     | 
| 2 | 
         
            +
            text_model: 'bert-base-uncased'
         
     | 
| 3 | 
         
            +
            text_len: 100
         
     | 
| 4 | 
         
            +
            transformer_embed_dim: 768
         
     | 
| 5 | 
         
            +
            freeze_text_encoder_weights: True
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            # AUDIO ENCODER CONFIG
         
     | 
| 8 | 
         
            +
            audioenc_name: 'Cnn14'
         
     | 
| 9 | 
         
            +
            out_emb: 2048
         
     | 
| 10 | 
         
            +
            sampling_rate: 44100
         
     | 
| 11 | 
         
            +
            duration: 9
         
     | 
| 12 | 
         
            +
            fmin: 50
         
     | 
| 13 | 
         
            +
            fmax: 14000
         
     | 
| 14 | 
         
            +
            n_fft: 1028
         
     | 
| 15 | 
         
            +
            hop_size: 320
         
     | 
| 16 | 
         
            +
            mel_bins: 64
         
     | 
| 17 | 
         
            +
            window_size: 1024
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            # PROJECTION SPACE CONFIG 
         
     | 
| 20 | 
         
            +
            d_proj: 1024
         
     | 
| 21 | 
         
            +
            temperature: 0.003
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            # TRAINING AND EVALUATION CONFIG
         
     | 
| 24 | 
         
            +
            num_classes: 527
         
     | 
| 25 | 
         
            +
            batch_size: 1024
         
     | 
| 26 | 
         
            +
            demo: False
         
     | 
    	
        configs/text_to_audio/hifigan_args.yaml
    ADDED
    
    | 
         @@ -0,0 +1,47 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            adam_b1: 0.8
         
     | 
| 2 | 
         
            +
            adam_b2: 0.99
         
     | 
| 3 | 
         
            +
            batch_size: 24
         
     | 
| 4 | 
         
            +
            dist_config:
         
     | 
| 5 | 
         
            +
              dist_backend: nccl
         
     | 
| 6 | 
         
            +
              dist_url: tcp://localhost:54321
         
     | 
| 7 | 
         
            +
              world_size: 1
         
     | 
| 8 | 
         
            +
            fmax: 8000
         
     | 
| 9 | 
         
            +
            fmax_for_loss: null
         
     | 
| 10 | 
         
            +
            fmin: 0
         
     | 
| 11 | 
         
            +
            hop_size: 256
         
     | 
| 12 | 
         
            +
            learning_rate: 0.0002
         
     | 
| 13 | 
         
            +
            lr_decay: 0.999
         
     | 
| 14 | 
         
            +
            n_fft: 1024
         
     | 
| 15 | 
         
            +
            num_gpus: 0
         
     | 
| 16 | 
         
            +
            num_mels: 80
         
     | 
| 17 | 
         
            +
            num_workers: 4
         
     | 
| 18 | 
         
            +
            resblock: '1'
         
     | 
| 19 | 
         
            +
            resblock_dilation_sizes:
         
     | 
| 20 | 
         
            +
            - - 1
         
     | 
| 21 | 
         
            +
              - 3
         
     | 
| 22 | 
         
            +
              - 5
         
     | 
| 23 | 
         
            +
            - - 1
         
     | 
| 24 | 
         
            +
              - 3
         
     | 
| 25 | 
         
            +
              - 5
         
     | 
| 26 | 
         
            +
            - - 1
         
     | 
| 27 | 
         
            +
              - 3
         
     | 
| 28 | 
         
            +
              - 5
         
     | 
| 29 | 
         
            +
            resblock_kernel_sizes:
         
     | 
| 30 | 
         
            +
            - 3
         
     | 
| 31 | 
         
            +
            - 7
         
     | 
| 32 | 
         
            +
            - 11
         
     | 
| 33 | 
         
            +
            sampling_rate: 16000
         
     | 
| 34 | 
         
            +
            seed: 1234
         
     | 
| 35 | 
         
            +
            segment_size: 8192
         
     | 
| 36 | 
         
            +
            upsample_initial_channel: 512
         
     | 
| 37 | 
         
            +
            upsample_kernel_sizes:
         
     | 
| 38 | 
         
            +
            - 16
         
     | 
| 39 | 
         
            +
            - 16
         
     | 
| 40 | 
         
            +
            - 4
         
     | 
| 41 | 
         
            +
            - 4
         
     | 
| 42 | 
         
            +
            upsample_rates:
         
     | 
| 43 | 
         
            +
            - 8
         
     | 
| 44 | 
         
            +
            - 8
         
     | 
| 45 | 
         
            +
            - 2
         
     | 
| 46 | 
         
            +
            - 2
         
     | 
| 47 | 
         
            +
            win_size: 1024
         
     | 
    	
        configs/text_to_audio/txt2audio_args.yaml
    ADDED
    
    | 
         @@ -0,0 +1,78 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            model:
         
     | 
| 2 | 
         
            +
              base_learning_rate: 1.0e-05
         
     | 
| 3 | 
         
            +
              target: ldm.models.diffusion.ddpm_audio.LatentDiffusion_audio
         
     | 
| 4 | 
         
            +
              params:
         
     | 
| 5 | 
         
            +
                linear_start: 0.00085
         
     | 
| 6 | 
         
            +
                linear_end: 0.0120
         
     | 
| 7 | 
         
            +
                num_timesteps_cond: 1
         
     | 
| 8 | 
         
            +
                log_every_t: 200
         
     | 
| 9 | 
         
            +
                timesteps: 1000
         
     | 
| 10 | 
         
            +
                first_stage_key: image
         
     | 
| 11 | 
         
            +
                cond_stage_key: caption
         
     | 
| 12 | 
         
            +
                image_size: 32      # unused
         
     | 
| 13 | 
         
            +
                mel_dim: 10         # 80 // 2^3
         
     | 
| 14 | 
         
            +
                mel_length: 78     # 624 // 2^3
         
     | 
| 15 | 
         
            +
                channels: 4
         
     | 
| 16 | 
         
            +
                cond_stage_trainable: false
         
     | 
| 17 | 
         
            +
                conditioning_key: crossattn
         
     | 
| 18 | 
         
            +
                monitor: val/loss_simple_ema
         
     | 
| 19 | 
         
            +
                scale_by_std: True
         
     | 
| 20 | 
         
            +
                use_ema: False
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                scheduler_config: # 10000 warmup steps
         
     | 
| 23 | 
         
            +
                  target: ldm.lr_scheduler.LambdaLinearScheduler
         
     | 
| 24 | 
         
            +
                  params:
         
     | 
| 25 | 
         
            +
                    warm_up_steps: [10000]
         
     | 
| 26 | 
         
            +
                    cycle_lengths: [10000000000000]
         
     | 
| 27 | 
         
            +
                    f_start: [1.e-6]
         
     | 
| 28 | 
         
            +
                    f_max: [1.]
         
     | 
| 29 | 
         
            +
                    f_min: [ 1.]
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                unet_config:
         
     | 
| 32 | 
         
            +
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         
     | 
| 33 | 
         
            +
                  params:
         
     | 
| 34 | 
         
            +
                    image_size: 32 # ununsed
         
     | 
| 35 | 
         
            +
                    in_channels: 4
         
     | 
| 36 | 
         
            +
                    out_channels: 4
         
     | 
| 37 | 
         
            +
                    model_channels: 320
         
     | 
| 38 | 
         
            +
                    attention_resolutions:
         
     | 
| 39 | 
         
            +
                    - 1
         
     | 
| 40 | 
         
            +
                    - 2
         
     | 
| 41 | 
         
            +
                    num_res_blocks: 2
         
     | 
| 42 | 
         
            +
                    channel_mult:  # num_down = len(ch_mult)-1
         
     | 
| 43 | 
         
            +
                    - 1
         
     | 
| 44 | 
         
            +
                    - 2
         
     | 
| 45 | 
         
            +
                    num_heads: 8
         
     | 
| 46 | 
         
            +
                    use_spatial_transformer: true
         
     | 
| 47 | 
         
            +
                    transformer_depth: 1
         
     | 
| 48 | 
         
            +
                    context_dim: 1024
         
     | 
| 49 | 
         
            +
                    use_checkpoint: true
         
     | 
| 50 | 
         
            +
                    legacy: False
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                first_stage_config:
         
     | 
| 53 | 
         
            +
                  target: ldm.models.autoencoder.AutoencoderKL
         
     | 
| 54 | 
         
            +
                  params:
         
     | 
| 55 | 
         
            +
                    embed_dim: 4
         
     | 
| 56 | 
         
            +
                    monitor: val/rec_loss
         
     | 
| 57 | 
         
            +
                    ckpt_path: 
         
     | 
| 58 | 
         
            +
                    ddconfig:
         
     | 
| 59 | 
         
            +
                      double_z: true
         
     | 
| 60 | 
         
            +
                      z_channels: 4
         
     | 
| 61 | 
         
            +
                      resolution: 848
         
     | 
| 62 | 
         
            +
                      in_channels: 1
         
     | 
| 63 | 
         
            +
                      out_ch: 1
         
     | 
| 64 | 
         
            +
                      ch: 128
         
     | 
| 65 | 
         
            +
                      ch_mult: [ 1, 2, 2, 4 ]  # num_down = len(ch_mult)-1
         
     | 
| 66 | 
         
            +
                      num_res_blocks: 2
         
     | 
| 67 | 
         
            +
                      attn_resolutions: [106, 212]
         
     | 
| 68 | 
         
            +
                      dropout: 0.0
         
     | 
| 69 | 
         
            +
                    lossconfig:
         
     | 
| 70 | 
         
            +
                      target: torch.nn.Identity
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                cond_stage_config:
         
     | 
| 73 | 
         
            +
                  target: ldm.modules.encoders.modules.FrozenCLAPEmbedder
         
     | 
| 74 | 
         
            +
                  params:
         
     | 
| 75 | 
         
            +
                    weights_path: useful_ckpts/CLAP/CLAP_weights_2022.pth
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            ckpt_path: useful_ckpts/ta40multi_epoch=000085.ckpt
         
     | 
| 78 | 
         
            +
             
     | 
    	
        ldm/__pycache__/util.cpython-38.pyc
    ADDED
    
    | 
         Binary file (5.1 kB). View file 
     | 
| 
         | 
    	
        ldm/__pycache__/util.cpython-39.pyc
    ADDED
    
    | 
         Binary file (5.14 kB). View file 
     | 
| 
         | 
    	
        ldm/lr_scheduler.py
    ADDED
    
    | 
         @@ -0,0 +1,98 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            class LambdaWarmUpCosineScheduler:
         
     | 
| 5 | 
         
            +
                """
         
     | 
| 6 | 
         
            +
                note: use with a base_lr of 1.0
         
     | 
| 7 | 
         
            +
                """
         
     | 
| 8 | 
         
            +
                def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
         
     | 
| 9 | 
         
            +
                    self.lr_warm_up_steps = warm_up_steps
         
     | 
| 10 | 
         
            +
                    self.lr_start = lr_start
         
     | 
| 11 | 
         
            +
                    self.lr_min = lr_min
         
     | 
| 12 | 
         
            +
                    self.lr_max = lr_max
         
     | 
| 13 | 
         
            +
                    self.lr_max_decay_steps = max_decay_steps
         
     | 
| 14 | 
         
            +
                    self.last_lr = 0.
         
     | 
| 15 | 
         
            +
                    self.verbosity_interval = verbosity_interval
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                def schedule(self, n, **kwargs):
         
     | 
| 18 | 
         
            +
                    if self.verbosity_interval > 0:
         
     | 
| 19 | 
         
            +
                        if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
         
     | 
| 20 | 
         
            +
                    if n < self.lr_warm_up_steps:
         
     | 
| 21 | 
         
            +
                        lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
         
     | 
| 22 | 
         
            +
                        self.last_lr = lr
         
     | 
| 23 | 
         
            +
                        return lr
         
     | 
| 24 | 
         
            +
                    else:
         
     | 
| 25 | 
         
            +
                        t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
         
     | 
| 26 | 
         
            +
                        t = min(t, 1.0)
         
     | 
| 27 | 
         
            +
                        lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
         
     | 
| 28 | 
         
            +
                                1 + np.cos(t * np.pi))
         
     | 
| 29 | 
         
            +
                        self.last_lr = lr
         
     | 
| 30 | 
         
            +
                        return lr
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                def __call__(self, n, **kwargs):
         
     | 
| 33 | 
         
            +
                    return self.schedule(n,**kwargs)
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            class LambdaWarmUpCosineScheduler2:
         
     | 
| 37 | 
         
            +
                """
         
     | 
| 38 | 
         
            +
                supports repeated iterations, configurable via lists
         
     | 
| 39 | 
         
            +
                note: use with a base_lr of 1.0.
         
     | 
| 40 | 
         
            +
                """
         
     | 
| 41 | 
         
            +
                def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
         
     | 
| 42 | 
         
            +
                    assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
         
     | 
| 43 | 
         
            +
                    self.lr_warm_up_steps = warm_up_steps
         
     | 
| 44 | 
         
            +
                    self.f_start = f_start
         
     | 
| 45 | 
         
            +
                    self.f_min = f_min
         
     | 
| 46 | 
         
            +
                    self.f_max = f_max
         
     | 
| 47 | 
         
            +
                    self.cycle_lengths = cycle_lengths
         
     | 
| 48 | 
         
            +
                    self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
         
     | 
| 49 | 
         
            +
                    self.last_f = 0.
         
     | 
| 50 | 
         
            +
                    self.verbosity_interval = verbosity_interval
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                def find_in_interval(self, n):
         
     | 
| 53 | 
         
            +
                    interval = 0
         
     | 
| 54 | 
         
            +
                    for cl in self.cum_cycles[1:]:
         
     | 
| 55 | 
         
            +
                        if n <= cl:
         
     | 
| 56 | 
         
            +
                            return interval
         
     | 
| 57 | 
         
            +
                        interval += 1
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                def schedule(self, n, **kwargs):
         
     | 
| 60 | 
         
            +
                    cycle = self.find_in_interval(n)
         
     | 
| 61 | 
         
            +
                    n = n - self.cum_cycles[cycle]
         
     | 
| 62 | 
         
            +
                    if self.verbosity_interval > 0:
         
     | 
| 63 | 
         
            +
                        if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
         
     | 
| 64 | 
         
            +
                                                                   f"current cycle {cycle}")
         
     | 
| 65 | 
         
            +
                    if n < self.lr_warm_up_steps[cycle]:
         
     | 
| 66 | 
         
            +
                        f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
         
     | 
| 67 | 
         
            +
                        self.last_f = f
         
     | 
| 68 | 
         
            +
                        return f
         
     | 
| 69 | 
         
            +
                    else:
         
     | 
| 70 | 
         
            +
                        t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
         
     | 
| 71 | 
         
            +
                        t = min(t, 1.0)
         
     | 
| 72 | 
         
            +
                        f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
         
     | 
| 73 | 
         
            +
                                1 + np.cos(t * np.pi))
         
     | 
| 74 | 
         
            +
                        self.last_f = f
         
     | 
| 75 | 
         
            +
                        return f
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                def __call__(self, n, **kwargs):
         
     | 
| 78 | 
         
            +
                    return self.schedule(n, **kwargs)
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                def schedule(self, n, **kwargs):
         
     | 
| 84 | 
         
            +
                    cycle = self.find_in_interval(n)
         
     | 
| 85 | 
         
            +
                    n = n - self.cum_cycles[cycle]
         
     | 
| 86 | 
         
            +
                    if self.verbosity_interval > 0:
         
     | 
| 87 | 
         
            +
                        if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
         
     | 
| 88 | 
         
            +
                                                                   f"current cycle {cycle}")
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                    if n < self.lr_warm_up_steps[cycle]:
         
     | 
| 91 | 
         
            +
                        f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
         
     | 
| 92 | 
         
            +
                        self.last_f = f
         
     | 
| 93 | 
         
            +
                        return f
         
     | 
| 94 | 
         
            +
                    else:
         
     | 
| 95 | 
         
            +
                        f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
         
     | 
| 96 | 
         
            +
                        self.last_f = f
         
     | 
| 97 | 
         
            +
                        return f
         
     | 
| 98 | 
         
            +
             
     | 
    	
        ldm/models/__pycache__/autoencoder.cpython-38.pyc
    ADDED
    
    | 
         Binary file (14.8 kB). View file 
     | 
| 
         | 
    	
        ldm/models/__pycache__/autoencoder.cpython-39.pyc
    ADDED
    
    | 
         Binary file (14.8 kB). View file 
     | 
| 
         | 
    	
        ldm/models/__pycache__/autoencoder_multi.cpython-38.pyc
    ADDED
    
    | 
         Binary file (14.8 kB). View file 
     | 
| 
         | 
    	
        ldm/models/autoencoder.py
    ADDED
    
    | 
         @@ -0,0 +1,474 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import torch
         
     | 
| 3 | 
         
            +
            import pytorch_lightning as pl
         
     | 
| 4 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 5 | 
         
            +
            from contextlib import contextmanager
         
     | 
| 6 | 
         
            +
            from packaging import version
         
     | 
| 7 | 
         
            +
            import numpy as np
         
     | 
| 8 | 
         
            +
            from ldm.modules.diffusionmodules.model import Encoder, Decoder
         
     | 
| 9 | 
         
            +
            from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
         
     | 
| 10 | 
         
            +
            from torch.optim.lr_scheduler import LambdaLR
         
     | 
| 11 | 
         
            +
            from ldm.util import instantiate_from_config
         
     | 
| 12 | 
         
            +
            # from icecream import ic
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            class VQModel(pl.LightningModule):
         
     | 
| 15 | 
         
            +
                def __init__(self,
         
     | 
| 16 | 
         
            +
                             ddconfig,
         
     | 
| 17 | 
         
            +
                             lossconfig,
         
     | 
| 18 | 
         
            +
                             n_embed,
         
     | 
| 19 | 
         
            +
                             embed_dim,
         
     | 
| 20 | 
         
            +
                             ckpt_path=None,
         
     | 
| 21 | 
         
            +
                             ignore_keys=[],
         
     | 
| 22 | 
         
            +
                             image_key="image",
         
     | 
| 23 | 
         
            +
                             colorize_nlabels=None,
         
     | 
| 24 | 
         
            +
                             monitor=None,
         
     | 
| 25 | 
         
            +
                             batch_resize_range=None,
         
     | 
| 26 | 
         
            +
                             scheduler_config=None,
         
     | 
| 27 | 
         
            +
                             lr_g_factor=1.0,
         
     | 
| 28 | 
         
            +
                             remap=None,
         
     | 
| 29 | 
         
            +
                             sane_index_shape=False, # tell vector quantizer to return indices as bhw
         
     | 
| 30 | 
         
            +
                             use_ema=False
         
     | 
| 31 | 
         
            +
                             ):
         
     | 
| 32 | 
         
            +
                    super().__init__()
         
     | 
| 33 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 34 | 
         
            +
                    self.n_embed = n_embed
         
     | 
| 35 | 
         
            +
                    self.image_key = image_key
         
     | 
| 36 | 
         
            +
                    self.encoder = Encoder(**ddconfig)
         
     | 
| 37 | 
         
            +
                    self.decoder = Decoder(**ddconfig)
         
     | 
| 38 | 
         
            +
                    self.loss = instantiate_from_config(lossconfig)
         
     | 
| 39 | 
         
            +
                    self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
         
     | 
| 40 | 
         
            +
                                                    remap=remap,
         
     | 
| 41 | 
         
            +
                                                    sane_index_shape=sane_index_shape)
         
     | 
| 42 | 
         
            +
                    self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
         
     | 
| 43 | 
         
            +
                    self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
         
     | 
| 44 | 
         
            +
                    if colorize_nlabels is not None:
         
     | 
| 45 | 
         
            +
                        assert type(colorize_nlabels)==int
         
     | 
| 46 | 
         
            +
                        self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
         
     | 
| 47 | 
         
            +
                    if monitor is not None:
         
     | 
| 48 | 
         
            +
                        self.monitor = monitor
         
     | 
| 49 | 
         
            +
                    self.batch_resize_range = batch_resize_range
         
     | 
| 50 | 
         
            +
                    if self.batch_resize_range is not None:
         
     | 
| 51 | 
         
            +
                        print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                    self.use_ema = use_ema
         
     | 
| 54 | 
         
            +
                    if self.use_ema:
         
     | 
| 55 | 
         
            +
                        self.model_ema = LitEma(self)
         
     | 
| 56 | 
         
            +
                        print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    if ckpt_path is not None:
         
     | 
| 59 | 
         
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
         
     | 
| 60 | 
         
            +
                    self.scheduler_config = scheduler_config
         
     | 
| 61 | 
         
            +
                    self.lr_g_factor = lr_g_factor
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                @contextmanager
         
     | 
| 64 | 
         
            +
                def ema_scope(self, context=None):
         
     | 
| 65 | 
         
            +
                    if self.use_ema:
         
     | 
| 66 | 
         
            +
                        self.model_ema.store(self.parameters())
         
     | 
| 67 | 
         
            +
                        self.model_ema.copy_to(self)
         
     | 
| 68 | 
         
            +
                        if context is not None:
         
     | 
| 69 | 
         
            +
                            print(f"{context}: Switched to EMA weights")
         
     | 
| 70 | 
         
            +
                    try:
         
     | 
| 71 | 
         
            +
                        yield None
         
     | 
| 72 | 
         
            +
                    finally:
         
     | 
| 73 | 
         
            +
                        if self.use_ema:
         
     | 
| 74 | 
         
            +
                            self.model_ema.restore(self.parameters())
         
     | 
| 75 | 
         
            +
                            if context is not None:
         
     | 
| 76 | 
         
            +
                                print(f"{context}: Restored training weights")
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                def init_from_ckpt(self, path, ignore_keys=list()):
         
     | 
| 79 | 
         
            +
                    sd = torch.load(path, map_location="cpu")["state_dict"]
         
     | 
| 80 | 
         
            +
                    keys = list(sd.keys())
         
     | 
| 81 | 
         
            +
                    for k in keys:
         
     | 
| 82 | 
         
            +
                        for ik in ignore_keys:
         
     | 
| 83 | 
         
            +
                            if k.startswith(ik):
         
     | 
| 84 | 
         
            +
                                print("Deleting key {} from state_dict.".format(k))
         
     | 
| 85 | 
         
            +
                                del sd[k]
         
     | 
| 86 | 
         
            +
                    missing, unexpected = self.load_state_dict(sd, strict=False)
         
     | 
| 87 | 
         
            +
                    print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
         
     | 
| 88 | 
         
            +
                    if len(missing) > 0:
         
     | 
| 89 | 
         
            +
                        print(f"Missing Keys: {missing}")
         
     | 
| 90 | 
         
            +
                        print(f"Unexpected Keys: {unexpected}")
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                def on_train_batch_end(self, *args, **kwargs):
         
     | 
| 93 | 
         
            +
                    if self.use_ema:
         
     | 
| 94 | 
         
            +
                        self.model_ema(self)
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                def encode(self, x):
         
     | 
| 97 | 
         
            +
                    h = self.encoder(x)
         
     | 
| 98 | 
         
            +
                    h = self.quant_conv(h)
         
     | 
| 99 | 
         
            +
                    quant, emb_loss, info = self.quantize(h)
         
     | 
| 100 | 
         
            +
                    return quant, emb_loss, info
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                def encode_to_prequant(self, x):
         
     | 
| 103 | 
         
            +
                    h = self.encoder(x)
         
     | 
| 104 | 
         
            +
                    h = self.quant_conv(h)
         
     | 
| 105 | 
         
            +
                    return h
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                def decode(self, quant):
         
     | 
| 108 | 
         
            +
                    quant = self.post_quant_conv(quant)
         
     | 
| 109 | 
         
            +
                    dec = self.decoder(quant)
         
     | 
| 110 | 
         
            +
                    return dec
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                def decode_code(self, code_b):
         
     | 
| 113 | 
         
            +
                    quant_b = self.quantize.embed_code(code_b)
         
     | 
| 114 | 
         
            +
                    dec = self.decode(quant_b)
         
     | 
| 115 | 
         
            +
                    return dec
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                def forward(self, input, return_pred_indices=False):
         
     | 
| 118 | 
         
            +
                    quant, diff, (_,_,ind) = self.encode(input)
         
     | 
| 119 | 
         
            +
                    dec = self.decode(quant)
         
     | 
| 120 | 
         
            +
                    if return_pred_indices:
         
     | 
| 121 | 
         
            +
                        return dec, diff, ind
         
     | 
| 122 | 
         
            +
                    return dec, diff
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                def get_input(self, batch, k):
         
     | 
| 125 | 
         
            +
                    x = batch[k]
         
     | 
| 126 | 
         
            +
                    if len(x.shape) == 3:
         
     | 
| 127 | 
         
            +
                        x = x[..., None]
         
     | 
| 128 | 
         
            +
                    x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
         
     | 
| 129 | 
         
            +
                    if self.batch_resize_range is not None:
         
     | 
| 130 | 
         
            +
                        lower_size = self.batch_resize_range[0]
         
     | 
| 131 | 
         
            +
                        upper_size = self.batch_resize_range[1]
         
     | 
| 132 | 
         
            +
                        if self.global_step <= 4:
         
     | 
| 133 | 
         
            +
                            # do the first few batches with max size to avoid later oom
         
     | 
| 134 | 
         
            +
                            new_resize = upper_size
         
     | 
| 135 | 
         
            +
                        else:
         
     | 
| 136 | 
         
            +
                            new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
         
     | 
| 137 | 
         
            +
                        if new_resize != x.shape[2]:
         
     | 
| 138 | 
         
            +
                            x = F.interpolate(x, size=new_resize, mode="bicubic")
         
     | 
| 139 | 
         
            +
                        x = x.detach()
         
     | 
| 140 | 
         
            +
                    return x
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                def training_step(self, batch, batch_idx, optimizer_idx):
         
     | 
| 143 | 
         
            +
                    # https://github.com/pytorch/pytorch/issues/37142
         
     | 
| 144 | 
         
            +
                    # try not to fool the heuristics
         
     | 
| 145 | 
         
            +
                    x = self.get_input(batch, self.image_key)
         
     | 
| 146 | 
         
            +
                    xrec, qloss, ind = self(x, return_pred_indices=True)
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                    if optimizer_idx == 0:
         
     | 
| 149 | 
         
            +
                        # autoencode
         
     | 
| 150 | 
         
            +
                        aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
         
     | 
| 151 | 
         
            +
                                                        last_layer=self.get_last_layer(), split="train",
         
     | 
| 152 | 
         
            +
                                                        predicted_indices=ind)
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                        self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
         
     | 
| 155 | 
         
            +
                        return aeloss
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                    if optimizer_idx == 1:
         
     | 
| 158 | 
         
            +
                        # discriminator
         
     | 
| 159 | 
         
            +
                        discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
         
     | 
| 160 | 
         
            +
                                                        last_layer=self.get_last_layer(), split="train")
         
     | 
| 161 | 
         
            +
                        self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
         
     | 
| 162 | 
         
            +
                        return discloss
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                def validation_step(self, batch, batch_idx):
         
     | 
| 165 | 
         
            +
                    log_dict = self._validation_step(batch, batch_idx)
         
     | 
| 166 | 
         
            +
                    with self.ema_scope():
         
     | 
| 167 | 
         
            +
                        log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
         
     | 
| 168 | 
         
            +
                    return log_dict
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                def _validation_step(self, batch, batch_idx, suffix=""):
         
     | 
| 171 | 
         
            +
                    x = self.get_input(batch, self.image_key)
         
     | 
| 172 | 
         
            +
                    xrec, qloss, ind = self(x, return_pred_indices=True)
         
     | 
| 173 | 
         
            +
                    aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
         
     | 
| 174 | 
         
            +
                                                    self.global_step,
         
     | 
| 175 | 
         
            +
                                                    last_layer=self.get_last_layer(),
         
     | 
| 176 | 
         
            +
                                                    split="val"+suffix,
         
     | 
| 177 | 
         
            +
                                                    predicted_indices=ind
         
     | 
| 178 | 
         
            +
                                                    )
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                    discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
         
     | 
| 181 | 
         
            +
                                                        self.global_step,
         
     | 
| 182 | 
         
            +
                                                        last_layer=self.get_last_layer(),
         
     | 
| 183 | 
         
            +
                                                        split="val"+suffix,
         
     | 
| 184 | 
         
            +
                                                        predicted_indices=ind
         
     | 
| 185 | 
         
            +
                                                        )
         
     | 
| 186 | 
         
            +
                    rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
         
     | 
| 187 | 
         
            +
                    self.log(f"val{suffix}/rec_loss", rec_loss,
         
     | 
| 188 | 
         
            +
                               prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
         
     | 
| 189 | 
         
            +
                    self.log(f"val{suffix}/aeloss", aeloss,
         
     | 
| 190 | 
         
            +
                               prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
         
     | 
| 191 | 
         
            +
                    if version.parse(pl.__version__) >= version.parse('1.4.0'):
         
     | 
| 192 | 
         
            +
                        del log_dict_ae[f"val{suffix}/rec_loss"]
         
     | 
| 193 | 
         
            +
                    self.log_dict(log_dict_ae)
         
     | 
| 194 | 
         
            +
                    self.log_dict(log_dict_disc)
         
     | 
| 195 | 
         
            +
                    return self.log_dict
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                def test_step(self, batch, batch_idx):
         
     | 
| 198 | 
         
            +
                    x = self.get_input(batch, self.image_key)
         
     | 
| 199 | 
         
            +
                    xrec, qloss, ind = self(x, return_pred_indices=True)
         
     | 
| 200 | 
         
            +
                    reconstructions = (xrec + 1)/2 # to mel scale
         
     | 
| 201 | 
         
            +
                    test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
         
     | 
| 202 | 
         
            +
                    savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
         
     | 
| 203 | 
         
            +
                    if not os.path.exists(savedir):
         
     | 
| 204 | 
         
            +
                        os.makedirs(savedir)
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                    file_names = batch['f_name']
         
     | 
| 207 | 
         
            +
                    # print(f"reconstructions.shape:{reconstructions.shape}",file_names)
         
     | 
| 208 | 
         
            +
                    reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
         
     | 
| 209 | 
         
            +
                    for b in range(reconstructions.shape[0]):
         
     | 
| 210 | 
         
            +
                        vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
         
     | 
| 211 | 
         
            +
                        v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
         
     | 
| 212 | 
         
            +
                        save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy')
         
     | 
| 213 | 
         
            +
                        np.save(save_img_path,reconstructions[b])
         
     | 
| 214 | 
         
            +
                    
         
     | 
| 215 | 
         
            +
                    return None
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                def configure_optimizers(self):
         
     | 
| 218 | 
         
            +
                    lr_d = self.learning_rate
         
     | 
| 219 | 
         
            +
                    lr_g = self.lr_g_factor*self.learning_rate
         
     | 
| 220 | 
         
            +
                    print("lr_d", lr_d)
         
     | 
| 221 | 
         
            +
                    print("lr_g", lr_g)
         
     | 
| 222 | 
         
            +
                    opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
         
     | 
| 223 | 
         
            +
                                              list(self.decoder.parameters())+
         
     | 
| 224 | 
         
            +
                                              list(self.quantize.parameters())+
         
     | 
| 225 | 
         
            +
                                              list(self.quant_conv.parameters())+
         
     | 
| 226 | 
         
            +
                                              list(self.post_quant_conv.parameters()),
         
     | 
| 227 | 
         
            +
                                              lr=lr_g, betas=(0.5, 0.9))
         
     | 
| 228 | 
         
            +
                    opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
         
     | 
| 229 | 
         
            +
                                                lr=lr_d, betas=(0.5, 0.9))
         
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
                    if self.scheduler_config is not None:
         
     | 
| 232 | 
         
            +
                        scheduler = instantiate_from_config(self.scheduler_config)
         
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
                        print("Setting up LambdaLR scheduler...")
         
     | 
| 235 | 
         
            +
                        scheduler = [
         
     | 
| 236 | 
         
            +
                            {
         
     | 
| 237 | 
         
            +
                                'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
         
     | 
| 238 | 
         
            +
                                'interval': 'step',
         
     | 
| 239 | 
         
            +
                                'frequency': 1
         
     | 
| 240 | 
         
            +
                            },
         
     | 
| 241 | 
         
            +
                            {
         
     | 
| 242 | 
         
            +
                                'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
         
     | 
| 243 | 
         
            +
                                'interval': 'step',
         
     | 
| 244 | 
         
            +
                                'frequency': 1
         
     | 
| 245 | 
         
            +
                            },
         
     | 
| 246 | 
         
            +
                        ]
         
     | 
| 247 | 
         
            +
                        return [opt_ae, opt_disc], scheduler
         
     | 
| 248 | 
         
            +
                    return [opt_ae, opt_disc], []
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                def get_last_layer(self):
         
     | 
| 251 | 
         
            +
                    return self.decoder.conv_out.weight
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
         
     | 
| 254 | 
         
            +
                    log = dict()
         
     | 
| 255 | 
         
            +
                    x = self.get_input(batch, self.image_key)
         
     | 
| 256 | 
         
            +
                    x = x.to(self.device)
         
     | 
| 257 | 
         
            +
                    if only_inputs:
         
     | 
| 258 | 
         
            +
                        log["inputs"] = x
         
     | 
| 259 | 
         
            +
                        return log
         
     | 
| 260 | 
         
            +
                    xrec, _ = self(x)
         
     | 
| 261 | 
         
            +
                    if x.shape[1] > 3:
         
     | 
| 262 | 
         
            +
                        # colorize with random projection
         
     | 
| 263 | 
         
            +
                        assert xrec.shape[1] > 3
         
     | 
| 264 | 
         
            +
                        x = self.to_rgb(x)
         
     | 
| 265 | 
         
            +
                        xrec = self.to_rgb(xrec)
         
     | 
| 266 | 
         
            +
                    log["inputs"] = x
         
     | 
| 267 | 
         
            +
                    log["reconstructions"] = xrec
         
     | 
| 268 | 
         
            +
                    if plot_ema:
         
     | 
| 269 | 
         
            +
                        with self.ema_scope():
         
     | 
| 270 | 
         
            +
                            xrec_ema, _ = self(x)
         
     | 
| 271 | 
         
            +
                            if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
         
     | 
| 272 | 
         
            +
                            log["reconstructions_ema"] = xrec_ema
         
     | 
| 273 | 
         
            +
                    return log
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
                def to_rgb(self, x):
         
     | 
| 276 | 
         
            +
                    assert self.image_key == "segmentation"
         
     | 
| 277 | 
         
            +
                    if not hasattr(self, "colorize"):
         
     | 
| 278 | 
         
            +
                        self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
         
     | 
| 279 | 
         
            +
                    x = F.conv2d(x, weight=self.colorize)
         
     | 
| 280 | 
         
            +
                    x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
         
     | 
| 281 | 
         
            +
                    return x
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
            class VQModelInterface(VQModel):
         
     | 
| 285 | 
         
            +
                def __init__(self, embed_dim, *args, **kwargs):
         
     | 
| 286 | 
         
            +
                    super().__init__(embed_dim=embed_dim, *args, **kwargs)
         
     | 
| 287 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                def encode(self, x):# VQModel的quantize写在encoder里,VQModelInterface则将其写在decoder里
         
     | 
| 290 | 
         
            +
                    h = self.encoder(x)
         
     | 
| 291 | 
         
            +
                    h = self.quant_conv(h)
         
     | 
| 292 | 
         
            +
                    return h
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                def decode(self, h, force_not_quantize=False):
         
     | 
| 295 | 
         
            +
                    # also go through quantization layer
         
     | 
| 296 | 
         
            +
                    if not force_not_quantize:
         
     | 
| 297 | 
         
            +
                        quant, emb_loss, info = self.quantize(h)
         
     | 
| 298 | 
         
            +
                    else:
         
     | 
| 299 | 
         
            +
                        quant = h
         
     | 
| 300 | 
         
            +
                    quant = self.post_quant_conv(quant)
         
     | 
| 301 | 
         
            +
                    dec = self.decoder(quant)
         
     | 
| 302 | 
         
            +
                    return dec
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
            class AutoencoderKL(pl.LightningModule):
         
     | 
| 306 | 
         
            +
                def __init__(self,
         
     | 
| 307 | 
         
            +
                             ddconfig,
         
     | 
| 308 | 
         
            +
                             lossconfig,
         
     | 
| 309 | 
         
            +
                             embed_dim,
         
     | 
| 310 | 
         
            +
                             ckpt_path=None,
         
     | 
| 311 | 
         
            +
                             ignore_keys=[],
         
     | 
| 312 | 
         
            +
                             image_key="image",
         
     | 
| 313 | 
         
            +
                             colorize_nlabels=None,
         
     | 
| 314 | 
         
            +
                             monitor=None,
         
     | 
| 315 | 
         
            +
                             ):
         
     | 
| 316 | 
         
            +
                    super().__init__()
         
     | 
| 317 | 
         
            +
                    self.image_key = image_key
         
     | 
| 318 | 
         
            +
                    self.encoder = Encoder(**ddconfig)
         
     | 
| 319 | 
         
            +
                    self.decoder = Decoder(**ddconfig)
         
     | 
| 320 | 
         
            +
                    self.loss = instantiate_from_config(lossconfig)
         
     | 
| 321 | 
         
            +
                    assert ddconfig["double_z"]
         
     | 
| 322 | 
         
            +
                    self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
         
     | 
| 323 | 
         
            +
                    self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
         
     | 
| 324 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 325 | 
         
            +
                    if colorize_nlabels is not None:
         
     | 
| 326 | 
         
            +
                        assert type(colorize_nlabels)==int
         
     | 
| 327 | 
         
            +
                        self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
         
     | 
| 328 | 
         
            +
                    if monitor is not None:
         
     | 
| 329 | 
         
            +
                        self.monitor = monitor
         
     | 
| 330 | 
         
            +
                    if ckpt_path is not None:
         
     | 
| 331 | 
         
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
         
     | 
| 332 | 
         
            +
                    # self.automatic_optimization = False # hjw for debug
         
     | 
| 333 | 
         
            +
             
     | 
| 334 | 
         
            +
                def init_from_ckpt(self, path, ignore_keys=list()):
         
     | 
| 335 | 
         
            +
                    sd = torch.load(path, map_location="cpu")["state_dict"]
         
     | 
| 336 | 
         
            +
                    keys = list(sd.keys())
         
     | 
| 337 | 
         
            +
                    for k in keys:
         
     | 
| 338 | 
         
            +
                        for ik in ignore_keys:
         
     | 
| 339 | 
         
            +
                            if k.startswith(ik):
         
     | 
| 340 | 
         
            +
                                print("Deleting key {} from state_dict.".format(k))
         
     | 
| 341 | 
         
            +
                                del sd[k]
         
     | 
| 342 | 
         
            +
                    self.load_state_dict(sd, strict=False)
         
     | 
| 343 | 
         
            +
                    print(f"Restored from {path}")
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
                def encode(self, x):
         
     | 
| 346 | 
         
            +
                    h = self.encoder(x)
         
     | 
| 347 | 
         
            +
                    moments = self.quant_conv(h)
         
     | 
| 348 | 
         
            +
                    posterior = DiagonalGaussianDistribution(moments)
         
     | 
| 349 | 
         
            +
                    return posterior
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
                def decode(self, z):
         
     | 
| 352 | 
         
            +
                    z = self.post_quant_conv(z)
         
     | 
| 353 | 
         
            +
                    dec = self.decoder(z)
         
     | 
| 354 | 
         
            +
                    return dec
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                def forward(self, input, sample_posterior=True):
         
     | 
| 357 | 
         
            +
                    posterior = self.encode(input)
         
     | 
| 358 | 
         
            +
                    if sample_posterior:
         
     | 
| 359 | 
         
            +
                        z = posterior.sample()
         
     | 
| 360 | 
         
            +
                    else:
         
     | 
| 361 | 
         
            +
                        z = posterior.mode()
         
     | 
| 362 | 
         
            +
                    dec = self.decode(z)
         
     | 
| 363 | 
         
            +
                    return dec, posterior
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                def get_input(self, batch, k):
         
     | 
| 366 | 
         
            +
                    x = batch[k]
         
     | 
| 367 | 
         
            +
                    if len(x.shape) == 3:
         
     | 
| 368 | 
         
            +
                        x = x[..., None]
         
     | 
| 369 | 
         
            +
                    x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
         
     | 
| 370 | 
         
            +
                    return x
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                def training_step(self, batch, batch_idx, optimizer_idx):
         
     | 
| 373 | 
         
            +
                    inputs = self.get_input(batch, self.image_key)
         
     | 
| 374 | 
         
            +
                    reconstructions, posterior = self(inputs)
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                    if optimizer_idx == 0:
         
     | 
| 377 | 
         
            +
                        # train encoder+decoder+logvar
         
     | 
| 378 | 
         
            +
                        aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
         
     | 
| 379 | 
         
            +
                                                        last_layer=self.get_last_layer(), split="train")
         
     | 
| 380 | 
         
            +
                        self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
         
     | 
| 381 | 
         
            +
                        self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
         
     | 
| 382 | 
         
            +
                        return aeloss
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                    if optimizer_idx == 1:
         
     | 
| 385 | 
         
            +
                        # train the discriminator
         
     | 
| 386 | 
         
            +
                        discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
         
     | 
| 387 | 
         
            +
                                                            last_layer=self.get_last_layer(), split="train")
         
     | 
| 388 | 
         
            +
             
     | 
| 389 | 
         
            +
                        self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
         
     | 
| 390 | 
         
            +
                        self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
         
     | 
| 391 | 
         
            +
                        return discloss
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                def validation_step(self, batch, batch_idx):
         
     | 
| 394 | 
         
            +
                    # self.log_images(batch,only_inputs=False,save_dir='mel_result_ae13_26/fake_class')
         
     | 
| 395 | 
         
            +
                    return self.log_dict
         
     | 
| 396 | 
         
            +
             
     | 
| 397 | 
         
            +
                def test_step(self, batch, batch_idx):
         
     | 
| 398 | 
         
            +
                    test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
         
     | 
| 399 | 
         
            +
                    savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
         
     | 
| 400 | 
         
            +
                    os.makedirs(savedir,exist_ok=True)
         
     | 
| 401 | 
         
            +
                    inputs = self.get_input(batch, self.image_key)# inputs shape:(b,c,mel_len,T) or (b,c,h,w)
         
     | 
| 402 | 
         
            +
                    # ic(inputs.shape)
         
     | 
| 403 | 
         
            +
                    # inputs = inputs[...,:624]
         
     | 
| 404 | 
         
            +
                    # ic(inputs.shape)
         
     | 
| 405 | 
         
            +
                    xrec, posterior = self(inputs)# reconstructions:(b,c,mel_len,T) or (b,c,h,w)
         
     | 
| 406 | 
         
            +
                    file_names = batch['f_name']
         
     | 
| 407 | 
         
            +
                    # print(f"reconstructions.shape:{reconstructions.shape}",file_names)
         
     | 
| 408 | 
         
            +
                    for b in range(len(file_names)):
         
     | 
| 409 | 
         
            +
                        rcon = (xrec[b].squeeze().detach().cpu().numpy() + 1) / 2 # to mel scale,squeeze channel dim
         
     | 
| 410 | 
         
            +
                        vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
         
     | 
| 411 | 
         
            +
                        v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
         
     | 
| 412 | 
         
            +
                        save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy')
         
     | 
| 413 | 
         
            +
                        np.save(save_img_path,rcon)
         
     | 
| 414 | 
         
            +
                    
         
     | 
| 415 | 
         
            +
                    return None
         
     | 
| 416 | 
         
            +
                    
         
     | 
| 417 | 
         
            +
                def configure_optimizers(self):
         
     | 
| 418 | 
         
            +
                    lr = self.learning_rate
         
     | 
| 419 | 
         
            +
                    opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
         
     | 
| 420 | 
         
            +
                                              list(self.decoder.parameters())+
         
     | 
| 421 | 
         
            +
                                              list(self.quant_conv.parameters())+
         
     | 
| 422 | 
         
            +
                                              list(self.post_quant_conv.parameters()),
         
     | 
| 423 | 
         
            +
                                              lr=lr, betas=(0.5, 0.9))
         
     | 
| 424 | 
         
            +
                    opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
         
     | 
| 425 | 
         
            +
                                                lr=lr, betas=(0.5, 0.9))
         
     | 
| 426 | 
         
            +
                    return [opt_ae, opt_disc], []
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                def get_last_layer(self):
         
     | 
| 429 | 
         
            +
                    return self.decoder.conv_out.weight
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                @torch.no_grad()
         
     | 
| 432 | 
         
            +
                def log_images(self, batch, only_inputs=False,save_dir = 'mel_result_ae13_26_debug/fake_class', **kwargs): # 在main.py的on_validation_batch_end中调用
         
     | 
| 433 | 
         
            +
                    log = dict()
         
     | 
| 434 | 
         
            +
                    x = self.get_input(batch, self.image_key)
         
     | 
| 435 | 
         
            +
                    x = x.to(self.device)
         
     | 
| 436 | 
         
            +
                    if not only_inputs:
         
     | 
| 437 | 
         
            +
                        xrec, posterior = self(x)
         
     | 
| 438 | 
         
            +
                        if x.shape[1] > 3:
         
     | 
| 439 | 
         
            +
                            # colorize with random projection
         
     | 
| 440 | 
         
            +
                            assert xrec.shape[1] > 3
         
     | 
| 441 | 
         
            +
                            x = self.to_rgb(x)
         
     | 
| 442 | 
         
            +
                            xrec = self.to_rgb(xrec)
         
     | 
| 443 | 
         
            +
                        log["samples"] = self.decode(torch.randn_like(posterior.sample()))
         
     | 
| 444 | 
         
            +
                        log["reconstructions"] = xrec
         
     | 
| 445 | 
         
            +
                    log["inputs"] = x
         
     | 
| 446 | 
         
            +
                    return log
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                def to_rgb(self, x):
         
     | 
| 449 | 
         
            +
                    assert self.image_key == "segmentation"
         
     | 
| 450 | 
         
            +
                    if not hasattr(self, "colorize"):
         
     | 
| 451 | 
         
            +
                        self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
         
     | 
| 452 | 
         
            +
                    x = F.conv2d(x, weight=self.colorize)
         
     | 
| 453 | 
         
            +
                    x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
         
     | 
| 454 | 
         
            +
                    return x
         
     | 
| 455 | 
         
            +
             
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
            class IdentityFirstStage(torch.nn.Module):
         
     | 
| 458 | 
         
            +
                def __init__(self, *args, vq_interface=False, **kwargs):
         
     | 
| 459 | 
         
            +
                    self.vq_interface = vq_interface  # TODO: Should be true by default but check to not break older stuff
         
     | 
| 460 | 
         
            +
                    super().__init__()
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
                def encode(self, x, *args, **kwargs):
         
     | 
| 463 | 
         
            +
                    return x
         
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
                def decode(self, x, *args, **kwargs):
         
     | 
| 466 | 
         
            +
                    return x
         
     | 
| 467 | 
         
            +
             
     | 
| 468 | 
         
            +
                def quantize(self, x, *args, **kwargs):
         
     | 
| 469 | 
         
            +
                    if self.vq_interface:
         
     | 
| 470 | 
         
            +
                        return x, None, [None, None, None]
         
     | 
| 471 | 
         
            +
                    return x
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
                def forward(self, x, *args, **kwargs):
         
     | 
| 474 | 
         
            +
                    return x
         
     | 
    	
        ldm/models/autoencoder_multi.py
    ADDED
    
    | 
         @@ -0,0 +1,201 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            与autoencoder.py的区别在于,autoencoder.py计算loss时只有一个discriminator,而此处又多了个multiwindowDiscriminator,所以优化器
         
     | 
| 3 | 
         
            +
            优化的参数改为:
         
     | 
| 4 | 
         
            +
            opt_disc = torch.optim.Adam(list(self.loss.discriminator.parameters()) + list(self.loss.discriminator_multi.parameters()),
         
     | 
| 5 | 
         
            +
                                        lr=lr, betas=(0.5, 0.9))
         
     | 
| 6 | 
         
            +
            """
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import os
         
     | 
| 9 | 
         
            +
            import torch
         
     | 
| 10 | 
         
            +
            import pytorch_lightning as pl
         
     | 
| 11 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 12 | 
         
            +
            from contextlib import contextmanager
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            from packaging import version
         
     | 
| 15 | 
         
            +
            import numpy as np
         
     | 
| 16 | 
         
            +
            from ldm.modules.diffusionmodules.model import Encoder, Decoder
         
     | 
| 17 | 
         
            +
            from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
         
     | 
| 18 | 
         
            +
            from torch.optim.lr_scheduler import LambdaLR
         
     | 
| 19 | 
         
            +
            from ldm.util import instantiate_from_config
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            class AutoencoderKL(pl.LightningModule):
         
     | 
| 24 | 
         
            +
                def __init__(self,
         
     | 
| 25 | 
         
            +
                             ddconfig,
         
     | 
| 26 | 
         
            +
                             lossconfig,
         
     | 
| 27 | 
         
            +
                             embed_dim,
         
     | 
| 28 | 
         
            +
                             ckpt_path=None,
         
     | 
| 29 | 
         
            +
                             ignore_keys=[],
         
     | 
| 30 | 
         
            +
                             image_key="image",
         
     | 
| 31 | 
         
            +
                             colorize_nlabels=None,
         
     | 
| 32 | 
         
            +
                             monitor=None,
         
     | 
| 33 | 
         
            +
                             ):
         
     | 
| 34 | 
         
            +
                    super().__init__()
         
     | 
| 35 | 
         
            +
                    self.image_key = image_key
         
     | 
| 36 | 
         
            +
                    self.encoder = Encoder(**ddconfig)
         
     | 
| 37 | 
         
            +
                    self.decoder = Decoder(**ddconfig)
         
     | 
| 38 | 
         
            +
                    self.loss = instantiate_from_config(lossconfig)
         
     | 
| 39 | 
         
            +
                    assert ddconfig["double_z"]
         
     | 
| 40 | 
         
            +
                    self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
         
     | 
| 41 | 
         
            +
                    self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
         
     | 
| 42 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 43 | 
         
            +
                    if colorize_nlabels is not None:
         
     | 
| 44 | 
         
            +
                        assert type(colorize_nlabels)==int
         
     | 
| 45 | 
         
            +
                        self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
         
     | 
| 46 | 
         
            +
                    if monitor is not None:
         
     | 
| 47 | 
         
            +
                        self.monitor = monitor
         
     | 
| 48 | 
         
            +
                    if ckpt_path is not None:
         
     | 
| 49 | 
         
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                def init_from_ckpt(self, path, ignore_keys=list()):
         
     | 
| 52 | 
         
            +
                    sd = torch.load(path, map_location="cpu")["state_dict"]
         
     | 
| 53 | 
         
            +
                    keys = list(sd.keys())
         
     | 
| 54 | 
         
            +
                    for k in keys:
         
     | 
| 55 | 
         
            +
                        for ik in ignore_keys:
         
     | 
| 56 | 
         
            +
                            if k.startswith(ik):
         
     | 
| 57 | 
         
            +
                                print("Deleting key {} from state_dict.".format(k))
         
     | 
| 58 | 
         
            +
                                del sd[k]
         
     | 
| 59 | 
         
            +
                    self.load_state_dict(sd, strict=False)
         
     | 
| 60 | 
         
            +
                    print(f"Restored from {path}")
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def encode(self, x):
         
     | 
| 63 | 
         
            +
                    h = self.encoder(x)
         
     | 
| 64 | 
         
            +
                    moments = self.quant_conv(h)
         
     | 
| 65 | 
         
            +
                    posterior = DiagonalGaussianDistribution(moments)
         
     | 
| 66 | 
         
            +
                    return posterior
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                def decode(self, z):
         
     | 
| 69 | 
         
            +
                    z = self.post_quant_conv(z)
         
     | 
| 70 | 
         
            +
                    dec = self.decoder(z)
         
     | 
| 71 | 
         
            +
                    return dec
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                def forward(self, input, sample_posterior=True):
         
     | 
| 74 | 
         
            +
                    posterior = self.encode(input)
         
     | 
| 75 | 
         
            +
                    if sample_posterior:
         
     | 
| 76 | 
         
            +
                        z = posterior.sample()
         
     | 
| 77 | 
         
            +
                    else:
         
     | 
| 78 | 
         
            +
                        z = posterior.mode()
         
     | 
| 79 | 
         
            +
                    dec = self.decode(z)
         
     | 
| 80 | 
         
            +
                    return dec, posterior
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                def get_input(self, batch, k):
         
     | 
| 83 | 
         
            +
                    x = batch[k]
         
     | 
| 84 | 
         
            +
                    if len(x.shape) == 3:
         
     | 
| 85 | 
         
            +
                        x = x[..., None]
         
     | 
| 86 | 
         
            +
                    x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
         
     | 
| 87 | 
         
            +
                    return x
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                def training_step(self, batch, batch_idx, optimizer_idx):
         
     | 
| 90 | 
         
            +
                    inputs = self.get_input(batch, self.image_key)
         
     | 
| 91 | 
         
            +
                    reconstructions, posterior = self(inputs)
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                    if optimizer_idx == 0:
         
     | 
| 94 | 
         
            +
                        # train encoder+decoder+logvar
         
     | 
| 95 | 
         
            +
                        aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
         
     | 
| 96 | 
         
            +
                                                        last_layer=self.get_last_layer(), split="train")
         
     | 
| 97 | 
         
            +
                        self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
         
     | 
| 98 | 
         
            +
                        self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
         
     | 
| 99 | 
         
            +
                        return aeloss
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    if optimizer_idx == 1:
         
     | 
| 102 | 
         
            +
                        # train the discriminator
         
     | 
| 103 | 
         
            +
                        discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
         
     | 
| 104 | 
         
            +
                                                            last_layer=self.get_last_layer(), split="train")
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                        self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
         
     | 
| 107 | 
         
            +
                        self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
         
     | 
| 108 | 
         
            +
                        return discloss
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                def validation_step(self, batch, batch_idx):
         
     | 
| 111 | 
         
            +
                    inputs = self.get_input(batch, self.image_key)
         
     | 
| 112 | 
         
            +
                    reconstructions, posterior = self(inputs)
         
     | 
| 113 | 
         
            +
                    aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
         
     | 
| 114 | 
         
            +
                                                    last_layer=self.get_last_layer(), split="val")
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                    discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
         
     | 
| 117 | 
         
            +
                                                        last_layer=self.get_last_layer(), split="val")
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                    self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
         
     | 
| 120 | 
         
            +
                    self.log_dict(log_dict_ae)
         
     | 
| 121 | 
         
            +
                    self.log_dict(log_dict_disc)
         
     | 
| 122 | 
         
            +
                    return self.log_dict
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                def test_step(self, batch, batch_idx):
         
     | 
| 125 | 
         
            +
                    inputs = self.get_input(batch, self.image_key)# inputs shape:(b,c,mel_len,T) or (b,c,h,w)
         
     | 
| 126 | 
         
            +
                    reconstructions, posterior = self(inputs)# reconstructions:(b,c,mel_len,T) or (b,c,h,w)
         
     | 
| 127 | 
         
            +
                    reconstructions = (reconstructions + 1)/2 # to mel scale
         
     | 
| 128 | 
         
            +
                    test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
         
     | 
| 129 | 
         
            +
                    savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
         
     | 
| 130 | 
         
            +
                    if not os.path.exists(savedir):
         
     | 
| 131 | 
         
            +
                        os.makedirs(savedir)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    file_names = batch['f_name']
         
     | 
| 134 | 
         
            +
                    # print(f"reconstructions.shape:{reconstructions.shape}",file_names)
         
     | 
| 135 | 
         
            +
                    reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
         
     | 
| 136 | 
         
            +
                    for b in range(reconstructions.shape[0]):
         
     | 
| 137 | 
         
            +
                        vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
         
     | 
| 138 | 
         
            +
                        v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
         
     | 
| 139 | 
         
            +
                        save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy')
         
     | 
| 140 | 
         
            +
                        np.save(save_img_path,reconstructions[b])
         
     | 
| 141 | 
         
            +
                    
         
     | 
| 142 | 
         
            +
                    return None
         
     | 
| 143 | 
         
            +
                    
         
     | 
| 144 | 
         
            +
                def configure_optimizers(self):
         
     | 
| 145 | 
         
            +
                    lr = self.learning_rate
         
     | 
| 146 | 
         
            +
                    opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
         
     | 
| 147 | 
         
            +
                                              list(self.decoder.parameters())+
         
     | 
| 148 | 
         
            +
                                              list(self.quant_conv.parameters())+
         
     | 
| 149 | 
         
            +
                                              list(self.post_quant_conv.parameters()),
         
     | 
| 150 | 
         
            +
                                              lr=lr, betas=(0.5, 0.9))
         
     | 
| 151 | 
         
            +
                    opt_disc = torch.optim.Adam(list(self.loss.discriminator.parameters()) + list(self.loss.discriminator_multi.parameters()),
         
     | 
| 152 | 
         
            +
                                                lr=lr, betas=(0.5, 0.9))
         
     | 
| 153 | 
         
            +
                    return [opt_ae, opt_disc], []
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                def get_last_layer(self):
         
     | 
| 156 | 
         
            +
                    return self.decoder.conv_out.weight
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                @torch.no_grad()
         
     | 
| 159 | 
         
            +
                def log_images(self, batch, only_inputs=False, **kwargs):
         
     | 
| 160 | 
         
            +
                    log = dict()
         
     | 
| 161 | 
         
            +
                    x = self.get_input(batch, self.image_key)
         
     | 
| 162 | 
         
            +
                    x = x.to(self.device)
         
     | 
| 163 | 
         
            +
                    if not only_inputs:
         
     | 
| 164 | 
         
            +
                        xrec, posterior = self(x)
         
     | 
| 165 | 
         
            +
                        if x.shape[1] > 3:
         
     | 
| 166 | 
         
            +
                            # colorize with random projection
         
     | 
| 167 | 
         
            +
                            assert xrec.shape[1] > 3
         
     | 
| 168 | 
         
            +
                            x = self.to_rgb(x)
         
     | 
| 169 | 
         
            +
                            xrec = self.to_rgb(xrec)
         
     | 
| 170 | 
         
            +
                        log["samples"] = self.decode(torch.randn_like(posterior.sample()))
         
     | 
| 171 | 
         
            +
                        log["reconstructions"] = xrec
         
     | 
| 172 | 
         
            +
                    log["inputs"] = x
         
     | 
| 173 | 
         
            +
                    return log
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                def to_rgb(self, x):
         
     | 
| 176 | 
         
            +
                    assert self.image_key == "segmentation"
         
     | 
| 177 | 
         
            +
                    if not hasattr(self, "colorize"):
         
     | 
| 178 | 
         
            +
                        self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
         
     | 
| 179 | 
         
            +
                    x = F.conv2d(x, weight=self.colorize)
         
     | 
| 180 | 
         
            +
                    x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
         
     | 
| 181 | 
         
            +
                    return x
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
            class IdentityFirstStage(torch.nn.Module):
         
     | 
| 185 | 
         
            +
                def __init__(self, *args, vq_interface=False, **kwargs):
         
     | 
| 186 | 
         
            +
                    self.vq_interface = vq_interface  # TODO: Should be true by default but check to not break older stuff
         
     | 
| 187 | 
         
            +
                    super().__init__()
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                def encode(self, x, *args, **kwargs):
         
     | 
| 190 | 
         
            +
                    return x
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                def decode(self, x, *args, **kwargs):
         
     | 
| 193 | 
         
            +
                    return x
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                def quantize(self, x, *args, **kwargs):
         
     | 
| 196 | 
         
            +
                    if self.vq_interface:
         
     | 
| 197 | 
         
            +
                        return x, None, [None, None, None]
         
     | 
| 198 | 
         
            +
                    return x
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                def forward(self, x, *args, **kwargs):
         
     | 
| 201 | 
         
            +
                    return x
         
     | 
    	
        ldm/models/diffusion/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc
    ADDED
    
    | 
         Binary file (175 Bytes). View file 
     | 
| 
         | 
    	
        ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | 
         Binary file (152 Bytes). View file 
     | 
| 
         | 
    	
        ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc
    ADDED
    
    | 
         Binary file (7.48 kB). View file 
     | 
| 
         | 
    	
        ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc
    ADDED
    
    | 
         Binary file (7.4 kB). View file 
     | 
| 
         | 
    	
        ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc
    ADDED
    
    | 
         Binary file (44 kB). View file 
     | 
| 
         | 
    	
        ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc
    ADDED
    
    | 
         Binary file (44 kB). View file 
     | 
| 
         | 
    	
        ldm/models/diffusion/__pycache__/ddpm_audio.cpython-38.pyc
    ADDED
    
    | 
         Binary file (38.7 kB). View file 
     | 
| 
         | 
    	
        ldm/models/diffusion/__pycache__/ddpm_audio.cpython-39.pyc
    ADDED
    
    | 
         Binary file (38.6 kB). View file 
     | 
| 
         | 
    	
        ldm/models/diffusion/__pycache__/ddpm_audio_inpaint.cpython-38.pyc
    ADDED
    
    | 
         Binary file (33.4 kB). View file 
     | 
| 
         | 
    	
        ldm/models/diffusion/__pycache__/plms.cpython-38.pyc
    ADDED
    
    | 
         Binary file (7.37 kB). View file 
     | 
| 
         | 
    	
        ldm/models/diffusion/__pycache__/plms.cpython-39.pyc
    ADDED
    
    | 
         Binary file (7.29 kB). View file 
     | 
| 
         | 
    	
        ldm/models/diffusion/classifier.py
    ADDED
    
    | 
         @@ -0,0 +1,267 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import torch
         
     | 
| 3 | 
         
            +
            import pytorch_lightning as pl
         
     | 
| 4 | 
         
            +
            from omegaconf import OmegaConf
         
     | 
| 5 | 
         
            +
            from torch.nn import functional as F
         
     | 
| 6 | 
         
            +
            from torch.optim import AdamW
         
     | 
| 7 | 
         
            +
            from torch.optim.lr_scheduler import LambdaLR
         
     | 
| 8 | 
         
            +
            from copy import deepcopy
         
     | 
| 9 | 
         
            +
            from einops import rearrange
         
     | 
| 10 | 
         
            +
            from glob import glob
         
     | 
| 11 | 
         
            +
            from natsort import natsorted
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
         
     | 
| 14 | 
         
            +
            from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            __models__ = {
         
     | 
| 17 | 
         
            +
                'class_label': EncoderUNetModel,
         
     | 
| 18 | 
         
            +
                'segmentation': UNetModel
         
     | 
| 19 | 
         
            +
            }
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            def disabled_train(self, mode=True):
         
     | 
| 23 | 
         
            +
                """Overwrite model.train with this function to make sure train/eval mode
         
     | 
| 24 | 
         
            +
                does not change anymore."""
         
     | 
| 25 | 
         
            +
                return self
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            class NoisyLatentImageClassifier(pl.LightningModule):
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                def __init__(self,
         
     | 
| 31 | 
         
            +
                             diffusion_path,
         
     | 
| 32 | 
         
            +
                             num_classes,
         
     | 
| 33 | 
         
            +
                             ckpt_path=None,
         
     | 
| 34 | 
         
            +
                             pool='attention',
         
     | 
| 35 | 
         
            +
                             label_key=None,
         
     | 
| 36 | 
         
            +
                             diffusion_ckpt_path=None,
         
     | 
| 37 | 
         
            +
                             scheduler_config=None,
         
     | 
| 38 | 
         
            +
                             weight_decay=1.e-2,
         
     | 
| 39 | 
         
            +
                             log_steps=10,
         
     | 
| 40 | 
         
            +
                             monitor='val/loss',
         
     | 
| 41 | 
         
            +
                             *args,
         
     | 
| 42 | 
         
            +
                             **kwargs):
         
     | 
| 43 | 
         
            +
                    super().__init__(*args, **kwargs)
         
     | 
| 44 | 
         
            +
                    self.num_classes = num_classes
         
     | 
| 45 | 
         
            +
                    # get latest config of diffusion model
         
     | 
| 46 | 
         
            +
                    diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
         
     | 
| 47 | 
         
            +
                    self.diffusion_config = OmegaConf.load(diffusion_config).model
         
     | 
| 48 | 
         
            +
                    self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
         
     | 
| 49 | 
         
            +
                    self.load_diffusion()
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                    self.monitor = monitor
         
     | 
| 52 | 
         
            +
                    self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
         
     | 
| 53 | 
         
            +
                    self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
         
     | 
| 54 | 
         
            +
                    self.log_steps = log_steps
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                    self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
         
     | 
| 57 | 
         
            +
                        else self.diffusion_model.cond_stage_key
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                    assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                    if self.label_key not in __models__:
         
     | 
| 62 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    self.load_classifier(ckpt_path, pool)
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    self.scheduler_config = scheduler_config
         
     | 
| 67 | 
         
            +
                    self.use_scheduler = self.scheduler_config is not None
         
     | 
| 68 | 
         
            +
                    self.weight_decay = weight_decay
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
         
     | 
| 71 | 
         
            +
                    sd = torch.load(path, map_location="cpu")
         
     | 
| 72 | 
         
            +
                    if "state_dict" in list(sd.keys()):
         
     | 
| 73 | 
         
            +
                        sd = sd["state_dict"]
         
     | 
| 74 | 
         
            +
                    keys = list(sd.keys())
         
     | 
| 75 | 
         
            +
                    for k in keys:
         
     | 
| 76 | 
         
            +
                        for ik in ignore_keys:
         
     | 
| 77 | 
         
            +
                            if k.startswith(ik):
         
     | 
| 78 | 
         
            +
                                print("Deleting key {} from state_dict.".format(k))
         
     | 
| 79 | 
         
            +
                                del sd[k]
         
     | 
| 80 | 
         
            +
                    missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
         
     | 
| 81 | 
         
            +
                        sd, strict=False)
         
     | 
| 82 | 
         
            +
                    print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
         
     | 
| 83 | 
         
            +
                    if len(missing) > 0:
         
     | 
| 84 | 
         
            +
                        print(f"Missing Keys: {missing}")
         
     | 
| 85 | 
         
            +
                    if len(unexpected) > 0:
         
     | 
| 86 | 
         
            +
                        print(f"Unexpected Keys: {unexpected}")
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                def load_diffusion(self):
         
     | 
| 89 | 
         
            +
                    model = instantiate_from_config(self.diffusion_config)
         
     | 
| 90 | 
         
            +
                    self.diffusion_model = model.eval()
         
     | 
| 91 | 
         
            +
                    self.diffusion_model.train = disabled_train
         
     | 
| 92 | 
         
            +
                    for param in self.diffusion_model.parameters():
         
     | 
| 93 | 
         
            +
                        param.requires_grad = False
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                def load_classifier(self, ckpt_path, pool):
         
     | 
| 96 | 
         
            +
                    model_config = deepcopy(self.diffusion_config.params.unet_config.params)
         
     | 
| 97 | 
         
            +
                    model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
         
     | 
| 98 | 
         
            +
                    model_config.out_channels = self.num_classes
         
     | 
| 99 | 
         
            +
                    if self.label_key == 'class_label':
         
     | 
| 100 | 
         
            +
                        model_config.pool = pool
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    self.model = __models__[self.label_key](**model_config)
         
     | 
| 103 | 
         
            +
                    if ckpt_path is not None:
         
     | 
| 104 | 
         
            +
                        print('#####################################################################')
         
     | 
| 105 | 
         
            +
                        print(f'load from ckpt "{ckpt_path}"')
         
     | 
| 106 | 
         
            +
                        print('#####################################################################')
         
     | 
| 107 | 
         
            +
                        self.init_from_ckpt(ckpt_path)
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                @torch.no_grad()
         
     | 
| 110 | 
         
            +
                def get_x_noisy(self, x, t, noise=None):
         
     | 
| 111 | 
         
            +
                    noise = default(noise, lambda: torch.randn_like(x))
         
     | 
| 112 | 
         
            +
                    continuous_sqrt_alpha_cumprod = None
         
     | 
| 113 | 
         
            +
                    if self.diffusion_model.use_continuous_noise:
         
     | 
| 114 | 
         
            +
                        continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
         
     | 
| 115 | 
         
            +
                        # todo: make sure t+1 is correct here
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                    return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
         
     | 
| 118 | 
         
            +
                                                         continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                def forward(self, x_noisy, t, *args, **kwargs):
         
     | 
| 121 | 
         
            +
                    return self.model(x_noisy, t)
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                @torch.no_grad()
         
     | 
| 124 | 
         
            +
                def get_input(self, batch, k):
         
     | 
| 125 | 
         
            +
                    x = batch[k]
         
     | 
| 126 | 
         
            +
                    if len(x.shape) == 3:
         
     | 
| 127 | 
         
            +
                        x = x[..., None]
         
     | 
| 128 | 
         
            +
                    x = rearrange(x, 'b h w c -> b c h w')
         
     | 
| 129 | 
         
            +
                    x = x.to(memory_format=torch.contiguous_format).float()
         
     | 
| 130 | 
         
            +
                    return x
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                @torch.no_grad()
         
     | 
| 133 | 
         
            +
                def get_conditioning(self, batch, k=None):
         
     | 
| 134 | 
         
            +
                    if k is None:
         
     | 
| 135 | 
         
            +
                        k = self.label_key
         
     | 
| 136 | 
         
            +
                    assert k is not None, 'Needs to provide label key'
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    targets = batch[k].to(self.device)
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                    if self.label_key == 'segmentation':
         
     | 
| 141 | 
         
            +
                        targets = rearrange(targets, 'b h w c -> b c h w')
         
     | 
| 142 | 
         
            +
                        for down in range(self.numd):
         
     | 
| 143 | 
         
            +
                            h, w = targets.shape[-2:]
         
     | 
| 144 | 
         
            +
                            targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                        # targets = rearrange(targets,'b c h w -> b h w c')
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                    return targets
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                def compute_top_k(self, logits, labels, k, reduction="mean"):
         
     | 
| 151 | 
         
            +
                    _, top_ks = torch.topk(logits, k, dim=1)
         
     | 
| 152 | 
         
            +
                    if reduction == "mean":
         
     | 
| 153 | 
         
            +
                        return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
         
     | 
| 154 | 
         
            +
                    elif reduction == "none":
         
     | 
| 155 | 
         
            +
                        return (top_ks == labels[:, None]).float().sum(dim=-1)
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                def on_train_epoch_start(self):
         
     | 
| 158 | 
         
            +
                    # save some memory
         
     | 
| 159 | 
         
            +
                    self.diffusion_model.model.to('cpu')
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                @torch.no_grad()
         
     | 
| 162 | 
         
            +
                def write_logs(self, loss, logits, targets):
         
     | 
| 163 | 
         
            +
                    log_prefix = 'train' if self.training else 'val'
         
     | 
| 164 | 
         
            +
                    log = {}
         
     | 
| 165 | 
         
            +
                    log[f"{log_prefix}/loss"] = loss.mean()
         
     | 
| 166 | 
         
            +
                    log[f"{log_prefix}/acc@1"] = self.compute_top_k(
         
     | 
| 167 | 
         
            +
                        logits, targets, k=1, reduction="mean"
         
     | 
| 168 | 
         
            +
                    )
         
     | 
| 169 | 
         
            +
                    log[f"{log_prefix}/acc@5"] = self.compute_top_k(
         
     | 
| 170 | 
         
            +
                        logits, targets, k=5, reduction="mean"
         
     | 
| 171 | 
         
            +
                    )
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                    self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
         
     | 
| 174 | 
         
            +
                    self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
         
     | 
| 175 | 
         
            +
                    self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
         
     | 
| 176 | 
         
            +
                    lr = self.optimizers().param_groups[0]['lr']
         
     | 
| 177 | 
         
            +
                    self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                def shared_step(self, batch, t=None):
         
     | 
| 180 | 
         
            +
                    x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
         
     | 
| 181 | 
         
            +
                    targets = self.get_conditioning(batch)
         
     | 
| 182 | 
         
            +
                    if targets.dim() == 4:
         
     | 
| 183 | 
         
            +
                        targets = targets.argmax(dim=1)
         
     | 
| 184 | 
         
            +
                    if t is None:
         
     | 
| 185 | 
         
            +
                        t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
         
     | 
| 186 | 
         
            +
                    else:
         
     | 
| 187 | 
         
            +
                        t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
         
     | 
| 188 | 
         
            +
                    x_noisy = self.get_x_noisy(x, t)
         
     | 
| 189 | 
         
            +
                    logits = self(x_noisy, t)
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                    loss = F.cross_entropy(logits, targets, reduction='none')
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    self.write_logs(loss.detach(), logits.detach(), targets.detach())
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                    loss = loss.mean()
         
     | 
| 196 | 
         
            +
                    return loss, logits, x_noisy, targets
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                def training_step(self, batch, batch_idx):
         
     | 
| 199 | 
         
            +
                    loss, *_ = self.shared_step(batch)
         
     | 
| 200 | 
         
            +
                    return loss
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                def reset_noise_accs(self):
         
     | 
| 203 | 
         
            +
                    self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
         
     | 
| 204 | 
         
            +
                                      range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                def on_validation_start(self):
         
     | 
| 207 | 
         
            +
                    self.reset_noise_accs()
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                @torch.no_grad()
         
     | 
| 210 | 
         
            +
                def validation_step(self, batch, batch_idx):
         
     | 
| 211 | 
         
            +
                    loss, *_ = self.shared_step(batch)
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                    for t in self.noisy_acc:
         
     | 
| 214 | 
         
            +
                        _, logits, _, targets = self.shared_step(batch, t)
         
     | 
| 215 | 
         
            +
                        self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
         
     | 
| 216 | 
         
            +
                        self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                    return loss
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                def configure_optimizers(self):
         
     | 
| 221 | 
         
            +
                    optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                    if self.use_scheduler:
         
     | 
| 224 | 
         
            +
                        scheduler = instantiate_from_config(self.scheduler_config)
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                        print("Setting up LambdaLR scheduler...")
         
     | 
| 227 | 
         
            +
                        scheduler = [
         
     | 
| 228 | 
         
            +
                            {
         
     | 
| 229 | 
         
            +
                                'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
         
     | 
| 230 | 
         
            +
                                'interval': 'step',
         
     | 
| 231 | 
         
            +
                                'frequency': 1
         
     | 
| 232 | 
         
            +
                            }]
         
     | 
| 233 | 
         
            +
                        return [optimizer], scheduler
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                    return optimizer
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                @torch.no_grad()
         
     | 
| 238 | 
         
            +
                def log_images(self, batch, N=8, *args, **kwargs):
         
     | 
| 239 | 
         
            +
                    log = dict()
         
     | 
| 240 | 
         
            +
                    x = self.get_input(batch, self.diffusion_model.first_stage_key)
         
     | 
| 241 | 
         
            +
                    log['inputs'] = x
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                    y = self.get_conditioning(batch)
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                    if self.label_key == 'class_label':
         
     | 
| 246 | 
         
            +
                        y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
         
     | 
| 247 | 
         
            +
                        log['labels'] = y
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    if ismap(y):
         
     | 
| 250 | 
         
            +
                        log['labels'] = self.diffusion_model.to_rgb(y)
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                        for step in range(self.log_steps):
         
     | 
| 253 | 
         
            +
                            current_time = step * self.log_time_interval
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                            _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                            log[f'inputs@t{current_time}'] = x_noisy
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                            pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
         
     | 
| 260 | 
         
            +
                            pred = rearrange(pred, 'b h w c -> b c h w')
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                            log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                    for key in log:
         
     | 
| 265 | 
         
            +
                        log[key] = log[key][:N]
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                    return log
         
     | 
    	
        ldm/models/diffusion/ddim.py
    ADDED
    
    | 
         @@ -0,0 +1,262 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """SAMPLING ONLY."""
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            from tqdm import tqdm
         
     | 
| 6 | 
         
            +
            from functools import partial
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
         
     | 
| 9 | 
         
            +
                extract_into_tensor
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            class DDIMSampler(object):
         
     | 
| 13 | 
         
            +
                def __init__(self, model, schedule="linear", **kwargs):
         
     | 
| 14 | 
         
            +
                    super().__init__()
         
     | 
| 15 | 
         
            +
                    self.model = model
         
     | 
| 16 | 
         
            +
                    self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
         
     | 
| 17 | 
         
            +
                    self.ddpm_num_timesteps = model.num_timesteps
         
     | 
| 18 | 
         
            +
                    self.schedule = schedule
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                def register_buffer(self, name, attr):
         
     | 
| 21 | 
         
            +
                    if type(attr) == torch.Tensor:
         
     | 
| 22 | 
         
            +
                        # if attr.device != torch.device("cuda"):
         
     | 
| 23 | 
         
            +
                        #     attr = attr.to(torch.device("cuda"))
         
     | 
| 24 | 
         
            +
                        attr = attr.to(self.device)
         
     | 
| 25 | 
         
            +
                    setattr(self, name, attr)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
         
     | 
| 28 | 
         
            +
                    self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
         
     | 
| 29 | 
         
            +
                                                              num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
         
     | 
| 30 | 
         
            +
                    alphas_cumprod = self.model.alphas_cumprod
         
     | 
| 31 | 
         
            +
                    assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
         
     | 
| 32 | 
         
            +
                    to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    self.register_buffer('betas', to_torch(self.model.betas))
         
     | 
| 35 | 
         
            +
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         
     | 
| 36 | 
         
            +
                    self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 39 | 
         
            +
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
         
     | 
| 40 | 
         
            +
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
         
     | 
| 41 | 
         
            +
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
         
     | 
| 42 | 
         
            +
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
         
     | 
| 43 | 
         
            +
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                    # ddim sampling parameters
         
     | 
| 46 | 
         
            +
                    ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
         
     | 
| 47 | 
         
            +
                                                                                               ddim_timesteps=self.ddim_timesteps,
         
     | 
| 48 | 
         
            +
                                                                                               eta=ddim_eta,verbose=verbose)
         
     | 
| 49 | 
         
            +
                    self.register_buffer('ddim_sigmas', ddim_sigmas)
         
     | 
| 50 | 
         
            +
                    self.register_buffer('ddim_alphas', ddim_alphas)
         
     | 
| 51 | 
         
            +
                    self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
         
     | 
| 52 | 
         
            +
                    self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
         
     | 
| 53 | 
         
            +
                    sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
         
     | 
| 54 | 
         
            +
                        (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
         
     | 
| 55 | 
         
            +
                                    1 - self.alphas_cumprod / self.alphas_cumprod_prev))
         
     | 
| 56 | 
         
            +
                    self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                @torch.no_grad()
         
     | 
| 59 | 
         
            +
                def sample(self,
         
     | 
| 60 | 
         
            +
                           S,
         
     | 
| 61 | 
         
            +
                           batch_size,
         
     | 
| 62 | 
         
            +
                           shape,
         
     | 
| 63 | 
         
            +
                           conditioning=None,
         
     | 
| 64 | 
         
            +
                           callback=None,
         
     | 
| 65 | 
         
            +
                           normals_sequence=None,
         
     | 
| 66 | 
         
            +
                           img_callback=None,
         
     | 
| 67 | 
         
            +
                           quantize_x0=False,
         
     | 
| 68 | 
         
            +
                           eta=0.,
         
     | 
| 69 | 
         
            +
                           mask=None,
         
     | 
| 70 | 
         
            +
                           x0=None,
         
     | 
| 71 | 
         
            +
                           temperature=1.,
         
     | 
| 72 | 
         
            +
                           noise_dropout=0.,
         
     | 
| 73 | 
         
            +
                           score_corrector=None,
         
     | 
| 74 | 
         
            +
                           corrector_kwargs=None,
         
     | 
| 75 | 
         
            +
                           verbose=True,
         
     | 
| 76 | 
         
            +
                           x_T=None,
         
     | 
| 77 | 
         
            +
                           log_every_t=100,
         
     | 
| 78 | 
         
            +
                           unconditional_guidance_scale=1.,
         
     | 
| 79 | 
         
            +
                           unconditional_conditioning=None,
         
     | 
| 80 | 
         
            +
                           # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
         
     | 
| 81 | 
         
            +
                           **kwargs
         
     | 
| 82 | 
         
            +
                           ):
         
     | 
| 83 | 
         
            +
                    if conditioning is not None:
         
     | 
| 84 | 
         
            +
                        if isinstance(conditioning, dict):
         
     | 
| 85 | 
         
            +
                            ctmp = conditioning[list(conditioning.keys())[0]]
         
     | 
| 86 | 
         
            +
                            while isinstance(ctmp, list): ctmp = ctmp[0]
         
     | 
| 87 | 
         
            +
                            cbs = ctmp.shape[0]
         
     | 
| 88 | 
         
            +
                            if cbs != batch_size:
         
     | 
| 89 | 
         
            +
                                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         
     | 
| 90 | 
         
            +
                        else:
         
     | 
| 91 | 
         
            +
                            if conditioning.shape[0] != batch_size:
         
     | 
| 92 | 
         
            +
                                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                    self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
         
     | 
| 95 | 
         
            +
                    # sampling
         
     | 
| 96 | 
         
            +
                    C, H, W = shape
         
     | 
| 97 | 
         
            +
                    size = (batch_size, C, H, W)
         
     | 
| 98 | 
         
            +
                    # print(f'Data shape for DDIM sampling is {size}, eta {eta}')
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    samples, intermediates = self.ddim_sampling(conditioning, size,
         
     | 
| 101 | 
         
            +
                                                                callback=callback,
         
     | 
| 102 | 
         
            +
                                                                img_callback=img_callback,
         
     | 
| 103 | 
         
            +
                                                                quantize_denoised=quantize_x0,
         
     | 
| 104 | 
         
            +
                                                                mask=mask, x0=x0,
         
     | 
| 105 | 
         
            +
                                                                ddim_use_original_steps=False,
         
     | 
| 106 | 
         
            +
                                                                noise_dropout=noise_dropout,
         
     | 
| 107 | 
         
            +
                                                                temperature=temperature,
         
     | 
| 108 | 
         
            +
                                                                score_corrector=score_corrector,
         
     | 
| 109 | 
         
            +
                                                                corrector_kwargs=corrector_kwargs,
         
     | 
| 110 | 
         
            +
                                                                x_T=x_T,
         
     | 
| 111 | 
         
            +
                                                                log_every_t=log_every_t,
         
     | 
| 112 | 
         
            +
                                                                unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 113 | 
         
            +
                                                                unconditional_conditioning=unconditional_conditioning,
         
     | 
| 114 | 
         
            +
                                                                )
         
     | 
| 115 | 
         
            +
                    return samples, intermediates
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                @torch.no_grad()
         
     | 
| 118 | 
         
            +
                def ddim_sampling(self, cond, shape,
         
     | 
| 119 | 
         
            +
                                  x_T=None, ddim_use_original_steps=False,
         
     | 
| 120 | 
         
            +
                                  callback=None, timesteps=None, quantize_denoised=False,
         
     | 
| 121 | 
         
            +
                                  mask=None, x0=None, img_callback=None, log_every_t=100,
         
     | 
| 122 | 
         
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 123 | 
         
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None,):
         
     | 
| 124 | 
         
            +
                    device = self.model.betas.device
         
     | 
| 125 | 
         
            +
                    b = shape[0]
         
     | 
| 126 | 
         
            +
                    if x_T is None:
         
     | 
| 127 | 
         
            +
                        img = torch.randn(shape, device=device)
         
     | 
| 128 | 
         
            +
                    else:
         
     | 
| 129 | 
         
            +
                        img = x_T
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                    if timesteps is None:
         
     | 
| 132 | 
         
            +
                        timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
         
     | 
| 133 | 
         
            +
                    elif timesteps is not None and not ddim_use_original_steps:
         
     | 
| 134 | 
         
            +
                        subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
         
     | 
| 135 | 
         
            +
                        timesteps = self.ddim_timesteps[:subset_end]
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                    intermediates = {'x_inter': [img], 'pred_x0': [img]}
         
     | 
| 138 | 
         
            +
                    time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
         
     | 
| 139 | 
         
            +
                    total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    # iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                    for i, step in enumerate(time_range):
         
     | 
| 144 | 
         
            +
                        index = total_steps - i - 1
         
     | 
| 145 | 
         
            +
                        ts = torch.full((b,), step, device=device, dtype=torch.long)
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                        if mask is not None:
         
     | 
| 148 | 
         
            +
                            assert x0 is not None
         
     | 
| 149 | 
         
            +
                            img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
         
     | 
| 150 | 
         
            +
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                        outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
         
     | 
| 153 | 
         
            +
                                                  quantize_denoised=quantize_denoised, temperature=temperature,
         
     | 
| 154 | 
         
            +
                                                  noise_dropout=noise_dropout, score_corrector=score_corrector,
         
     | 
| 155 | 
         
            +
                                                  corrector_kwargs=corrector_kwargs,
         
     | 
| 156 | 
         
            +
                                                  unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 157 | 
         
            +
                                                  unconditional_conditioning=unconditional_conditioning)
         
     | 
| 158 | 
         
            +
                        img, pred_x0 = outs
         
     | 
| 159 | 
         
            +
                        if callback: callback(i)
         
     | 
| 160 | 
         
            +
                        if img_callback: img_callback(pred_x0, i)
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                        if index % log_every_t == 0 or index == total_steps - 1:
         
     | 
| 163 | 
         
            +
                            intermediates['x_inter'].append(img)
         
     | 
| 164 | 
         
            +
                            intermediates['pred_x0'].append(pred_x0)
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                    return img, intermediates
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                @torch.no_grad()
         
     | 
| 169 | 
         
            +
                def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
         
     | 
| 170 | 
         
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 171 | 
         
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None):
         
     | 
| 172 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                    if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
         
     | 
| 175 | 
         
            +
                        e_t = self.model.apply_model(x, t, c)
         
     | 
| 176 | 
         
            +
                    else:
         
     | 
| 177 | 
         
            +
                        x_in = torch.cat([x] * 2)
         
     | 
| 178 | 
         
            +
                        t_in = torch.cat([t] * 2)
         
     | 
| 179 | 
         
            +
                        if isinstance(c, dict):
         
     | 
| 180 | 
         
            +
                            assert isinstance(unconditional_conditioning, dict)
         
     | 
| 181 | 
         
            +
                            c_in = dict()
         
     | 
| 182 | 
         
            +
                            for k in c:
         
     | 
| 183 | 
         
            +
                                if isinstance(c[k], list):
         
     | 
| 184 | 
         
            +
                                    c_in[k] = [torch.cat([
         
     | 
| 185 | 
         
            +
                                        unconditional_conditioning[k][i],
         
     | 
| 186 | 
         
            +
                                        c[k][i]]) for i in range(len(c[k]))]
         
     | 
| 187 | 
         
            +
                                else:
         
     | 
| 188 | 
         
            +
                                    c_in[k] = torch.cat([
         
     | 
| 189 | 
         
            +
                                        unconditional_conditioning[k],
         
     | 
| 190 | 
         
            +
                                        c[k]])
         
     | 
| 191 | 
         
            +
                        elif isinstance(c, list):
         
     | 
| 192 | 
         
            +
                            c_in = list()
         
     | 
| 193 | 
         
            +
                            assert isinstance(unconditional_conditioning, list)
         
     | 
| 194 | 
         
            +
                            for i in range(len(c)):
         
     | 
| 195 | 
         
            +
                                c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
         
     | 
| 196 | 
         
            +
                        else:
         
     | 
| 197 | 
         
            +
                            c_in = torch.cat([unconditional_conditioning, c])# c/uc shape [b,seq_len=77,dim=1024],c_in shape [b*2,seq_len,dim]
         
     | 
| 198 | 
         
            +
                        e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
         
     | 
| 199 | 
         
            +
                        e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                    if score_corrector is not None:
         
     | 
| 202 | 
         
            +
                        assert self.model.parameterization == "eps"
         
     | 
| 203 | 
         
            +
                        e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                    alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
         
     | 
| 206 | 
         
            +
                    alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
         
     | 
| 207 | 
         
            +
                    sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
         
     | 
| 208 | 
         
            +
                    sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
         
     | 
| 209 | 
         
            +
                    # select parameters corresponding to the currently considered timestep
         
     | 
| 210 | 
         
            +
                    a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
         
     | 
| 211 | 
         
            +
                    a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
         
     | 
| 212 | 
         
            +
                    sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
         
     | 
| 213 | 
         
            +
                    sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                    # current prediction for x_0
         
     | 
| 216 | 
         
            +
                    pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
         
     | 
| 217 | 
         
            +
                    if quantize_denoised:
         
     | 
| 218 | 
         
            +
                        pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
         
     | 
| 219 | 
         
            +
                    # direction pointing to x_t
         
     | 
| 220 | 
         
            +
                    dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
         
     | 
| 221 | 
         
            +
                    noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 222 | 
         
            +
                    if noise_dropout > 0.:
         
     | 
| 223 | 
         
            +
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 224 | 
         
            +
                    x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
         
     | 
| 225 | 
         
            +
                    return x_prev, pred_x0
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                @torch.no_grad()
         
     | 
| 228 | 
         
            +
                def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
         
     | 
| 229 | 
         
            +
                    # fast, but does not allow for exact reconstruction
         
     | 
| 230 | 
         
            +
                    # t serves as an index to gather the correct alphas
         
     | 
| 231 | 
         
            +
                    if use_original_steps:
         
     | 
| 232 | 
         
            +
                        sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
         
     | 
| 233 | 
         
            +
                        sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
         
     | 
| 234 | 
         
            +
                    else:
         
     | 
| 235 | 
         
            +
                        sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
         
     | 
| 236 | 
         
            +
                        sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                    if noise is None:
         
     | 
| 239 | 
         
            +
                        noise = torch.randn_like(x0)
         
     | 
| 240 | 
         
            +
                    return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
         
     | 
| 241 | 
         
            +
                            extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                @torch.no_grad()
         
     | 
| 244 | 
         
            +
                def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
         
     | 
| 245 | 
         
            +
                           use_original_steps=False):
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                    timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
         
     | 
| 248 | 
         
            +
                    timesteps = timesteps[:t_start]
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                    time_range = np.flip(timesteps)
         
     | 
| 251 | 
         
            +
                    total_steps = timesteps.shape[0]
         
     | 
| 252 | 
         
            +
                    # print(f"Running DDIM Sampling with {total_steps} timesteps")
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                    # iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
         
     | 
| 255 | 
         
            +
                    x_dec = x_latent
         
     | 
| 256 | 
         
            +
                    for i, step in enumerate(time_range):
         
     | 
| 257 | 
         
            +
                        index = total_steps - i - 1
         
     | 
| 258 | 
         
            +
                        ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
         
     | 
| 259 | 
         
            +
                        x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
         
     | 
| 260 | 
         
            +
                                                      unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 261 | 
         
            +
                                                      unconditional_conditioning=unconditional_conditioning)
         
     | 
| 262 | 
         
            +
                    return x_dec
         
     | 
    	
        ldm/models/diffusion/ddpm.py
    ADDED
    
    | 
         @@ -0,0 +1,1444 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            wild mixture of
         
     | 
| 3 | 
         
            +
            https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         
     | 
| 4 | 
         
            +
            https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
         
     | 
| 5 | 
         
            +
            https://github.com/CompVis/taming-transformers
         
     | 
| 6 | 
         
            +
            -- merci
         
     | 
| 7 | 
         
            +
            """
         
     | 
| 8 | 
         
            +
            import torch
         
     | 
| 9 | 
         
            +
            import torch.nn as nn
         
     | 
| 10 | 
         
            +
            import numpy as np
         
     | 
| 11 | 
         
            +
            import pytorch_lightning as pl
         
     | 
| 12 | 
         
            +
            from torch.optim.lr_scheduler import LambdaLR
         
     | 
| 13 | 
         
            +
            from einops import rearrange, repeat
         
     | 
| 14 | 
         
            +
            from contextlib import contextmanager
         
     | 
| 15 | 
         
            +
            from functools import partial
         
     | 
| 16 | 
         
            +
            from tqdm import tqdm
         
     | 
| 17 | 
         
            +
            from torchvision.utils import make_grid
         
     | 
| 18 | 
         
            +
            from pytorch_lightning.utilities.distributed import rank_zero_only
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
         
     | 
| 21 | 
         
            +
            from ldm.modules.ema import LitEma
         
     | 
| 22 | 
         
            +
            from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
         
     | 
| 23 | 
         
            +
            from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
         
     | 
| 24 | 
         
            +
            from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
         
     | 
| 25 | 
         
            +
            from ldm.models.diffusion.ddim import DDIMSampler
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            __conditioning_keys__ = {'concat': 'c_concat',
         
     | 
| 29 | 
         
            +
                                     'crossattn': 'c_crossattn',
         
     | 
| 30 | 
         
            +
                                     'adm': 'y'}
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            def disabled_train(self, mode=True):
         
     | 
| 34 | 
         
            +
                """Overwrite model.train with this function to make sure train/eval mode
         
     | 
| 35 | 
         
            +
                does not change anymore."""
         
     | 
| 36 | 
         
            +
                return self
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            def uniform_on_device(r1, r2, shape, device):
         
     | 
| 40 | 
         
            +
                return (r1 - r2) * torch.rand(*shape, device=device) + r2
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            class DDPM(pl.LightningModule):
         
     | 
| 44 | 
         
            +
                # classic DDPM with Gaussian diffusion, in image space
         
     | 
| 45 | 
         
            +
                def __init__(self,
         
     | 
| 46 | 
         
            +
                             unet_config,
         
     | 
| 47 | 
         
            +
                             timesteps=1000,
         
     | 
| 48 | 
         
            +
                             beta_schedule="linear",
         
     | 
| 49 | 
         
            +
                             loss_type="l2",
         
     | 
| 50 | 
         
            +
                             ckpt_path=None,
         
     | 
| 51 | 
         
            +
                             ignore_keys=[],
         
     | 
| 52 | 
         
            +
                             load_only_unet=False,
         
     | 
| 53 | 
         
            +
                             monitor="val/loss",
         
     | 
| 54 | 
         
            +
                             use_ema=True,
         
     | 
| 55 | 
         
            +
                             first_stage_key="image",
         
     | 
| 56 | 
         
            +
                             image_size=256,
         
     | 
| 57 | 
         
            +
                             channels=3,
         
     | 
| 58 | 
         
            +
                             log_every_t=100,
         
     | 
| 59 | 
         
            +
                             clip_denoised=True,
         
     | 
| 60 | 
         
            +
                             linear_start=1e-4,
         
     | 
| 61 | 
         
            +
                             linear_end=2e-2,
         
     | 
| 62 | 
         
            +
                             cosine_s=8e-3,
         
     | 
| 63 | 
         
            +
                             given_betas=None,
         
     | 
| 64 | 
         
            +
                             original_elbo_weight=0.,
         
     | 
| 65 | 
         
            +
                             v_posterior=0.,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
         
     | 
| 66 | 
         
            +
                             l_simple_weight=1.,
         
     | 
| 67 | 
         
            +
                             conditioning_key=None,
         
     | 
| 68 | 
         
            +
                             parameterization="eps",  # all config files uses "eps"
         
     | 
| 69 | 
         
            +
                             scheduler_config=None,
         
     | 
| 70 | 
         
            +
                             use_positional_encodings=False,
         
     | 
| 71 | 
         
            +
                             learn_logvar=False,
         
     | 
| 72 | 
         
            +
                             logvar_init=0.,
         
     | 
| 73 | 
         
            +
                             ):
         
     | 
| 74 | 
         
            +
                    super().__init__()
         
     | 
| 75 | 
         
            +
                    assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
         
     | 
| 76 | 
         
            +
                    self.parameterization = parameterization
         
     | 
| 77 | 
         
            +
                    print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
         
     | 
| 78 | 
         
            +
                    self.cond_stage_model = None
         
     | 
| 79 | 
         
            +
                    self.clip_denoised = clip_denoised
         
     | 
| 80 | 
         
            +
                    self.log_every_t = log_every_t
         
     | 
| 81 | 
         
            +
                    self.first_stage_key = first_stage_key
         
     | 
| 82 | 
         
            +
                    self.image_size = image_size  # try conv?
         
     | 
| 83 | 
         
            +
                    self.channels = channels
         
     | 
| 84 | 
         
            +
                    self.use_positional_encodings = use_positional_encodings
         
     | 
| 85 | 
         
            +
                    self.model = DiffusionWrapper(unet_config, conditioning_key)
         
     | 
| 86 | 
         
            +
                    count_params(self.model, verbose=True)
         
     | 
| 87 | 
         
            +
                    self.use_ema = use_ema
         
     | 
| 88 | 
         
            +
                    if self.use_ema:
         
     | 
| 89 | 
         
            +
                        self.model_ema = LitEma(self.model)
         
     | 
| 90 | 
         
            +
                        print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    self.use_scheduler = scheduler_config is not None
         
     | 
| 93 | 
         
            +
                    if self.use_scheduler:
         
     | 
| 94 | 
         
            +
                        self.scheduler_config = scheduler_config
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                    self.v_posterior = v_posterior
         
     | 
| 97 | 
         
            +
                    self.original_elbo_weight = original_elbo_weight
         
     | 
| 98 | 
         
            +
                    self.l_simple_weight = l_simple_weight
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    if monitor is not None:
         
     | 
| 101 | 
         
            +
                        self.monitor = monitor
         
     | 
| 102 | 
         
            +
                    if ckpt_path is not None:
         
     | 
| 103 | 
         
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                    self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
         
     | 
| 106 | 
         
            +
                                           linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                    self.loss_type = loss_type
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                    self.learn_logvar = learn_logvar
         
     | 
| 111 | 
         
            +
                    self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
         
     | 
| 112 | 
         
            +
                    if self.learn_logvar:
         
     | 
| 113 | 
         
            +
                        self.logvar = nn.Parameter(self.logvar, requires_grad=True)
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
         
     | 
| 116 | 
         
            +
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 117 | 
         
            +
                    if exists(given_betas):
         
     | 
| 118 | 
         
            +
                        betas = given_betas
         
     | 
| 119 | 
         
            +
                    else:
         
     | 
| 120 | 
         
            +
                        betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
         
     | 
| 121 | 
         
            +
                                                   cosine_s=cosine_s)
         
     | 
| 122 | 
         
            +
                    alphas = 1. - betas
         
     | 
| 123 | 
         
            +
                    alphas_cumprod = np.cumprod(alphas, axis=0)
         
     | 
| 124 | 
         
            +
                    alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    timesteps, = betas.shape
         
     | 
| 127 | 
         
            +
                    self.num_timesteps = int(timesteps)
         
     | 
| 128 | 
         
            +
                    self.linear_start = linear_start
         
     | 
| 129 | 
         
            +
                    self.linear_end = linear_end
         
     | 
| 130 | 
         
            +
                    assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                    to_torch = partial(torch.tensor, dtype=torch.float32)
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                    self.register_buffer('betas', to_torch(betas))
         
     | 
| 135 | 
         
            +
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         
     | 
| 136 | 
         
            +
                    self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 139 | 
         
            +
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
         
     | 
| 140 | 
         
            +
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
         
     | 
| 141 | 
         
            +
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
         
     | 
| 142 | 
         
            +
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
         
     | 
| 143 | 
         
            +
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                    # calculations for posterior q(x_{t-1} | x_t, x_0)
         
     | 
| 146 | 
         
            +
                    posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
         
     | 
| 147 | 
         
            +
                                1. - alphas_cumprod) + self.v_posterior * betas
         
     | 
| 148 | 
         
            +
                    # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
         
     | 
| 149 | 
         
            +
                    self.register_buffer('posterior_variance', to_torch(posterior_variance))
         
     | 
| 150 | 
         
            +
                    # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
         
     | 
| 151 | 
         
            +
                    self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
         
     | 
| 152 | 
         
            +
                    self.register_buffer('posterior_mean_coef1', to_torch(
         
     | 
| 153 | 
         
            +
                        betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
         
     | 
| 154 | 
         
            +
                    self.register_buffer('posterior_mean_coef2', to_torch(
         
     | 
| 155 | 
         
            +
                        (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 158 | 
         
            +
                        lvlb_weights = self.betas ** 2 / (
         
     | 
| 159 | 
         
            +
                                    2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
         
     | 
| 160 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 161 | 
         
            +
                        lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
         
     | 
| 162 | 
         
            +
                    else:
         
     | 
| 163 | 
         
            +
                        raise NotImplementedError("mu not supported")
         
     | 
| 164 | 
         
            +
                    # TODO how to choose this term
         
     | 
| 165 | 
         
            +
                    lvlb_weights[0] = lvlb_weights[1]
         
     | 
| 166 | 
         
            +
                    self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
         
     | 
| 167 | 
         
            +
                    assert not torch.isnan(self.lvlb_weights).all()
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                @contextmanager
         
     | 
| 170 | 
         
            +
                def ema_scope(self, context=None):
         
     | 
| 171 | 
         
            +
                    if self.use_ema:
         
     | 
| 172 | 
         
            +
                        self.model_ema.store(self.model.parameters())
         
     | 
| 173 | 
         
            +
                        self.model_ema.copy_to(self.model)
         
     | 
| 174 | 
         
            +
                        if context is not None:
         
     | 
| 175 | 
         
            +
                            print(f"{context}: Switched to EMA weights")
         
     | 
| 176 | 
         
            +
                    try:
         
     | 
| 177 | 
         
            +
                        yield None
         
     | 
| 178 | 
         
            +
                    finally:
         
     | 
| 179 | 
         
            +
                        if self.use_ema:
         
     | 
| 180 | 
         
            +
                            self.model_ema.restore(self.model.parameters())
         
     | 
| 181 | 
         
            +
                            if context is not None:
         
     | 
| 182 | 
         
            +
                                print(f"{context}: Restored training weights")
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
         
     | 
| 185 | 
         
            +
                    sd = torch.load(path, map_location="cpu")
         
     | 
| 186 | 
         
            +
                    if "state_dict" in list(sd.keys()):
         
     | 
| 187 | 
         
            +
                        sd = sd["state_dict"]
         
     | 
| 188 | 
         
            +
                    keys = list(sd.keys())
         
     | 
| 189 | 
         
            +
                    for k in keys:
         
     | 
| 190 | 
         
            +
                        for ik in ignore_keys:
         
     | 
| 191 | 
         
            +
                            if k.startswith(ik):
         
     | 
| 192 | 
         
            +
                                print("Deleting key {} from state_dict.".format(k))
         
     | 
| 193 | 
         
            +
                                del sd[k]
         
     | 
| 194 | 
         
            +
                    missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
         
     | 
| 195 | 
         
            +
                        sd, strict=False)
         
     | 
| 196 | 
         
            +
                    print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
         
     | 
| 197 | 
         
            +
                    if len(missing) > 0:
         
     | 
| 198 | 
         
            +
                        print(f"Missing Keys: {missing}")
         
     | 
| 199 | 
         
            +
                    if len(unexpected) > 0:
         
     | 
| 200 | 
         
            +
                        print(f"Unexpected Keys: {unexpected}")
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                def q_mean_variance(self, x_start, t):
         
     | 
| 203 | 
         
            +
                    """
         
     | 
| 204 | 
         
            +
                    Get the distribution q(x_t | x_0).
         
     | 
| 205 | 
         
            +
                    :param x_start: the [N x C x ...] tensor of noiseless inputs.
         
     | 
| 206 | 
         
            +
                    :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
         
     | 
| 207 | 
         
            +
                    :return: A tuple (mean, variance, log_variance), all of x_start's shape.
         
     | 
| 208 | 
         
            +
                    """
         
     | 
| 209 | 
         
            +
                    mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
         
     | 
| 210 | 
         
            +
                    variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
         
     | 
| 211 | 
         
            +
                    log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
         
     | 
| 212 | 
         
            +
                    return mean, variance, log_variance
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                def predict_start_from_noise(self, x_t, t, noise):
         
     | 
| 215 | 
         
            +
                    return (
         
     | 
| 216 | 
         
            +
                            extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
         
     | 
| 217 | 
         
            +
                            extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
         
     | 
| 218 | 
         
            +
                    )
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                def q_posterior(self, x_start, x_t, t):
         
     | 
| 221 | 
         
            +
                    posterior_mean = (
         
     | 
| 222 | 
         
            +
                            extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
         
     | 
| 223 | 
         
            +
                            extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
         
     | 
| 224 | 
         
            +
                    )
         
     | 
| 225 | 
         
            +
                    posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
         
     | 
| 226 | 
         
            +
                    posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
         
     | 
| 227 | 
         
            +
                    return posterior_mean, posterior_variance, posterior_log_variance_clipped
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                def p_mean_variance(self, x, t, clip_denoised: bool):
         
     | 
| 230 | 
         
            +
                    model_out = self.model(x, t)
         
     | 
| 231 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 232 | 
         
            +
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         
     | 
| 233 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 234 | 
         
            +
                        x_recon = model_out
         
     | 
| 235 | 
         
            +
                    if clip_denoised:
         
     | 
| 236 | 
         
            +
                        x_recon.clamp_(-1., 1.)
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
         
     | 
| 239 | 
         
            +
                    return model_mean, posterior_variance, posterior_log_variance
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
                @torch.no_grad()
         
     | 
| 242 | 
         
            +
                def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
         
     | 
| 243 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 244 | 
         
            +
                    model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
         
     | 
| 245 | 
         
            +
                    noise = noise_like(x.shape, device, repeat_noise)
         
     | 
| 246 | 
         
            +
                    # no noise when t == 0
         
     | 
| 247 | 
         
            +
                    nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
         
     | 
| 248 | 
         
            +
                    return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                @torch.no_grad()
         
     | 
| 251 | 
         
            +
                def p_sample_loop(self, shape, return_intermediates=False):
         
     | 
| 252 | 
         
            +
                    device = self.betas.device
         
     | 
| 253 | 
         
            +
                    b = shape[0]
         
     | 
| 254 | 
         
            +
                    img = torch.randn(shape, device=device)
         
     | 
| 255 | 
         
            +
                    intermediates = [img]
         
     | 
| 256 | 
         
            +
                    for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
         
     | 
| 257 | 
         
            +
                        img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
         
     | 
| 258 | 
         
            +
                                            clip_denoised=self.clip_denoised)
         
     | 
| 259 | 
         
            +
                        if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
         
     | 
| 260 | 
         
            +
                            intermediates.append(img)
         
     | 
| 261 | 
         
            +
                    if return_intermediates:
         
     | 
| 262 | 
         
            +
                        return img, intermediates
         
     | 
| 263 | 
         
            +
                    return img
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                @torch.no_grad()
         
     | 
| 266 | 
         
            +
                def sample(self, batch_size=16, return_intermediates=False):
         
     | 
| 267 | 
         
            +
                    image_size = self.image_size
         
     | 
| 268 | 
         
            +
                    channels = self.channels
         
     | 
| 269 | 
         
            +
                    return self.p_sample_loop((batch_size, channels, image_size, image_size),
         
     | 
| 270 | 
         
            +
                                              return_intermediates=return_intermediates)
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                def q_sample(self, x_start, t, noise=None):
         
     | 
| 273 | 
         
            +
                    noise = default(noise, lambda: torch.randn_like(x_start))
         
     | 
| 274 | 
         
            +
                    return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
         
     | 
| 275 | 
         
            +
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
                def get_loss(self, pred, target, mean=True):
         
     | 
| 278 | 
         
            +
                    if self.loss_type == 'l1':
         
     | 
| 279 | 
         
            +
                        loss = (target - pred).abs()
         
     | 
| 280 | 
         
            +
                        if mean:
         
     | 
| 281 | 
         
            +
                            loss = loss.mean()
         
     | 
| 282 | 
         
            +
                    elif self.loss_type == 'l2':
         
     | 
| 283 | 
         
            +
                        if mean:
         
     | 
| 284 | 
         
            +
                            loss = torch.nn.functional.mse_loss(target, pred)
         
     | 
| 285 | 
         
            +
                        else:
         
     | 
| 286 | 
         
            +
                            loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
         
     | 
| 287 | 
         
            +
                    else:
         
     | 
| 288 | 
         
            +
                        raise NotImplementedError("unknown loss type '{loss_type}'")
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
                    return loss
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                def p_losses(self, x_start, t, noise=None):
         
     | 
| 293 | 
         
            +
                    noise = default(noise, lambda: torch.randn_like(x_start))
         
     | 
| 294 | 
         
            +
                    x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         
     | 
| 295 | 
         
            +
                    model_out = self.model(x_noisy, t)
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                    loss_dict = {}
         
     | 
| 298 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 299 | 
         
            +
                        target = noise
         
     | 
| 300 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 301 | 
         
            +
                        target = x_start
         
     | 
| 302 | 
         
            +
                    else:
         
     | 
| 303 | 
         
            +
                        raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
         
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
                    loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
         
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
                    log_prefix = 'train' if self.training else 'val'
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                    loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
         
     | 
| 310 | 
         
            +
                    loss_simple = loss.mean() * self.l_simple_weight
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                    loss_vlb = (self.lvlb_weights[t] * loss).mean()
         
     | 
| 313 | 
         
            +
                    loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                    loss = loss_simple + self.original_elbo_weight * loss_vlb
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
                    loss_dict.update({f'{log_prefix}/loss': loss})
         
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
                    return loss, loss_dict
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                def forward(self, x, *args, **kwargs):
         
     | 
| 322 | 
         
            +
                    # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
         
     | 
| 323 | 
         
            +
                    # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
         
     | 
| 324 | 
         
            +
                    t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
         
     | 
| 325 | 
         
            +
                    return self.p_losses(x, t, *args, **kwargs)
         
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
                def get_input(self, batch, k):
         
     | 
| 328 | 
         
            +
                    x = batch[k]
         
     | 
| 329 | 
         
            +
                    if len(x.shape) == 3:
         
     | 
| 330 | 
         
            +
                        x = x[..., None]
         
     | 
| 331 | 
         
            +
                    x = rearrange(x, 'b h w c -> b c h w')
         
     | 
| 332 | 
         
            +
                    x = x.to(memory_format=torch.contiguous_format).float()
         
     | 
| 333 | 
         
            +
                    return x
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                def shared_step(self, batch):
         
     | 
| 336 | 
         
            +
                    x = self.get_input(batch, self.first_stage_key)
         
     | 
| 337 | 
         
            +
                    loss, loss_dict = self(x)
         
     | 
| 338 | 
         
            +
                    return loss, loss_dict
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
                def training_step(self, batch, batch_idx):
         
     | 
| 341 | 
         
            +
                    loss, loss_dict = self.shared_step(batch)
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                    self.log_dict(loss_dict, prog_bar=True,
         
     | 
| 344 | 
         
            +
                                  logger=True, on_step=True, on_epoch=True)
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
                    self.log("global_step", self.global_step,
         
     | 
| 347 | 
         
            +
                             prog_bar=True, logger=True, on_step=True, on_epoch=False)
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                    if self.use_scheduler:
         
     | 
| 350 | 
         
            +
                        lr = self.optimizers().param_groups[0]['lr']
         
     | 
| 351 | 
         
            +
                        self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
         
     | 
| 352 | 
         
            +
             
     | 
| 353 | 
         
            +
                    return loss
         
     | 
| 354 | 
         
            +
             
     | 
| 355 | 
         
            +
                @torch.no_grad()
         
     | 
| 356 | 
         
            +
                def validation_step(self, batch, batch_idx):
         
     | 
| 357 | 
         
            +
                    _, loss_dict_no_ema = self.shared_step(batch)
         
     | 
| 358 | 
         
            +
                    with self.ema_scope():
         
     | 
| 359 | 
         
            +
                        _, loss_dict_ema = self.shared_step(batch)
         
     | 
| 360 | 
         
            +
                        loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
         
     | 
| 361 | 
         
            +
                    self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
         
     | 
| 362 | 
         
            +
                    self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                def on_train_batch_end(self, *args, **kwargs):
         
     | 
| 365 | 
         
            +
                    if self.use_ema:
         
     | 
| 366 | 
         
            +
                        self.model_ema(self.model)
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                def _get_rows_from_list(self, samples):
         
     | 
| 369 | 
         
            +
                    n_imgs_per_row = len(samples)
         
     | 
| 370 | 
         
            +
                    denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
         
     | 
| 371 | 
         
            +
                    denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 372 | 
         
            +
                    denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
         
     | 
| 373 | 
         
            +
                    return denoise_grid
         
     | 
| 374 | 
         
            +
             
     | 
| 375 | 
         
            +
                @torch.no_grad()
         
     | 
| 376 | 
         
            +
                def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
         
     | 
| 377 | 
         
            +
                    log = dict()
         
     | 
| 378 | 
         
            +
                    x = self.get_input(batch, self.first_stage_key)
         
     | 
| 379 | 
         
            +
                    N = min(x.shape[0], N)
         
     | 
| 380 | 
         
            +
                    n_row = min(x.shape[0], n_row)
         
     | 
| 381 | 
         
            +
                    x = x.to(self.device)[:N]
         
     | 
| 382 | 
         
            +
                    log["inputs"] = x
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                    # get diffusion row
         
     | 
| 385 | 
         
            +
                    diffusion_row = list()
         
     | 
| 386 | 
         
            +
                    x_start = x[:n_row]
         
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
                    for t in range(self.num_timesteps):
         
     | 
| 389 | 
         
            +
                        if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         
     | 
| 390 | 
         
            +
                            t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         
     | 
| 391 | 
         
            +
                            t = t.to(self.device).long()
         
     | 
| 392 | 
         
            +
                            noise = torch.randn_like(x_start)
         
     | 
| 393 | 
         
            +
                            x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         
     | 
| 394 | 
         
            +
                            diffusion_row.append(x_noisy)
         
     | 
| 395 | 
         
            +
             
     | 
| 396 | 
         
            +
                    log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                    if sample:
         
     | 
| 399 | 
         
            +
                        # get denoise row
         
     | 
| 400 | 
         
            +
                        with self.ema_scope("Plotting"):
         
     | 
| 401 | 
         
            +
                            samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
                        log["samples"] = samples
         
     | 
| 404 | 
         
            +
                        log["denoise_row"] = self._get_rows_from_list(denoise_row)
         
     | 
| 405 | 
         
            +
             
     | 
| 406 | 
         
            +
                    if return_keys:
         
     | 
| 407 | 
         
            +
                        if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
         
     | 
| 408 | 
         
            +
                            return log
         
     | 
| 409 | 
         
            +
                        else:
         
     | 
| 410 | 
         
            +
                            return {key: log[key] for key in return_keys}
         
     | 
| 411 | 
         
            +
                    return log
         
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
                def configure_optimizers(self):
         
     | 
| 414 | 
         
            +
                    lr = self.learning_rate
         
     | 
| 415 | 
         
            +
                    params = list(self.model.parameters())
         
     | 
| 416 | 
         
            +
                    if self.learn_logvar:
         
     | 
| 417 | 
         
            +
                        params = params + [self.logvar]
         
     | 
| 418 | 
         
            +
                    opt = torch.optim.AdamW(params, lr=lr)
         
     | 
| 419 | 
         
            +
                    return opt
         
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
            class LatentDiffusion(DDPM):
         
     | 
| 423 | 
         
            +
                """main class"""
         
     | 
| 424 | 
         
            +
                def __init__(self,
         
     | 
| 425 | 
         
            +
                             first_stage_config,
         
     | 
| 426 | 
         
            +
                             cond_stage_config,
         
     | 
| 427 | 
         
            +
                             num_timesteps_cond=None,
         
     | 
| 428 | 
         
            +
                             cond_stage_key="image",# 'caption' for txt2image, 'masked_image' for inpainting 
         
     | 
| 429 | 
         
            +
                             cond_stage_trainable=False,
         
     | 
| 430 | 
         
            +
                             concat_mode=True,# true for inpainting
         
     | 
| 431 | 
         
            +
                             cond_stage_forward=None,
         
     | 
| 432 | 
         
            +
                             conditioning_key=None, # 'crossattn' for txt2image, None for inpainting
         
     | 
| 433 | 
         
            +
                             scale_factor=1.0,
         
     | 
| 434 | 
         
            +
                             scale_by_std=False,
         
     | 
| 435 | 
         
            +
                             *args, **kwargs):
         
     | 
| 436 | 
         
            +
                    self.num_timesteps_cond = default(num_timesteps_cond, 1)
         
     | 
| 437 | 
         
            +
                    self.scale_by_std = scale_by_std
         
     | 
| 438 | 
         
            +
                    assert self.num_timesteps_cond <= kwargs['timesteps']
         
     | 
| 439 | 
         
            +
                    # for backwards compatibility after implementation of DiffusionWrapper
         
     | 
| 440 | 
         
            +
                    if conditioning_key is None:
         
     | 
| 441 | 
         
            +
                        conditioning_key = 'concat' if concat_mode else 'crossattn'
         
     | 
| 442 | 
         
            +
                    if cond_stage_config == '__is_unconditional__':
         
     | 
| 443 | 
         
            +
                        conditioning_key = None
         
     | 
| 444 | 
         
            +
                    ckpt_path = kwargs.pop("ckpt_path", None)
         
     | 
| 445 | 
         
            +
                    ignore_keys = kwargs.pop("ignore_keys", [])
         
     | 
| 446 | 
         
            +
                    super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
         
     | 
| 447 | 
         
            +
                    self.concat_mode = concat_mode
         
     | 
| 448 | 
         
            +
                    self.cond_stage_trainable = cond_stage_trainable
         
     | 
| 449 | 
         
            +
                    self.cond_stage_key = cond_stage_key 
         
     | 
| 450 | 
         
            +
                    try:
         
     | 
| 451 | 
         
            +
                        self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
         
     | 
| 452 | 
         
            +
                    except:
         
     | 
| 453 | 
         
            +
                        self.num_downs = 0
         
     | 
| 454 | 
         
            +
                    if not scale_by_std:
         
     | 
| 455 | 
         
            +
                        self.scale_factor = scale_factor
         
     | 
| 456 | 
         
            +
                    else:
         
     | 
| 457 | 
         
            +
                        self.register_buffer('scale_factor', torch.tensor(scale_factor))
         
     | 
| 458 | 
         
            +
                    self.instantiate_first_stage(first_stage_config)
         
     | 
| 459 | 
         
            +
                    self.instantiate_cond_stage(cond_stage_config)
         
     | 
| 460 | 
         
            +
                    self.cond_stage_forward = cond_stage_forward
         
     | 
| 461 | 
         
            +
                    self.clip_denoised = False
         
     | 
| 462 | 
         
            +
                    self.bbox_tokenizer = None  
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
                    self.restarted_from_ckpt = False
         
     | 
| 465 | 
         
            +
                    if ckpt_path is not None:
         
     | 
| 466 | 
         
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys)
         
     | 
| 467 | 
         
            +
                        self.restarted_from_ckpt = True
         
     | 
| 468 | 
         
            +
             
     | 
| 469 | 
         
            +
                def make_cond_schedule(self, ):
         
     | 
| 470 | 
         
            +
                    self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
         
     | 
| 471 | 
         
            +
                    ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
         
     | 
| 472 | 
         
            +
                    self.cond_ids[:self.num_timesteps_cond] = ids
         
     | 
| 473 | 
         
            +
             
     | 
| 474 | 
         
            +
                @rank_zero_only
         
     | 
| 475 | 
         
            +
                @torch.no_grad()
         
     | 
| 476 | 
         
            +
                def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
         
     | 
| 477 | 
         
            +
                    # only for very first batch
         
     | 
| 478 | 
         
            +
                    if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
         
     | 
| 479 | 
         
            +
                        assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
         
     | 
| 480 | 
         
            +
                        # set rescale weight to 1./std of encodings
         
     | 
| 481 | 
         
            +
                        print("### USING STD-RESCALING ###")
         
     | 
| 482 | 
         
            +
                        x = super().get_input(batch, self.first_stage_key)
         
     | 
| 483 | 
         
            +
                        x = x.to(self.device)
         
     | 
| 484 | 
         
            +
                        encoder_posterior = self.encode_first_stage(x)
         
     | 
| 485 | 
         
            +
                        z = self.get_first_stage_encoding(encoder_posterior).detach()
         
     | 
| 486 | 
         
            +
                        del self.scale_factor
         
     | 
| 487 | 
         
            +
                        self.register_buffer('scale_factor', 1. / z.flatten().std())
         
     | 
| 488 | 
         
            +
                        print(f"setting self.scale_factor to {self.scale_factor}")
         
     | 
| 489 | 
         
            +
                        print("### USING STD-RESCALING ###")
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                def register_schedule(self,
         
     | 
| 492 | 
         
            +
                                      given_betas=None, beta_schedule="linear", timesteps=1000,
         
     | 
| 493 | 
         
            +
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 494 | 
         
            +
                    super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
         
     | 
| 495 | 
         
            +
             
     | 
| 496 | 
         
            +
                    self.shorten_cond_schedule = self.num_timesteps_cond > 1
         
     | 
| 497 | 
         
            +
                    if self.shorten_cond_schedule:
         
     | 
| 498 | 
         
            +
                        self.make_cond_schedule()
         
     | 
| 499 | 
         
            +
             
     | 
| 500 | 
         
            +
                def instantiate_first_stage(self, config):
         
     | 
| 501 | 
         
            +
                    model = instantiate_from_config(config)
         
     | 
| 502 | 
         
            +
                    self.first_stage_model = model.eval()
         
     | 
| 503 | 
         
            +
                    self.first_stage_model.train = disabled_train
         
     | 
| 504 | 
         
            +
                    for param in self.first_stage_model.parameters():
         
     | 
| 505 | 
         
            +
                        param.requires_grad = False
         
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
                def instantiate_cond_stage(self, config):
         
     | 
| 508 | 
         
            +
                    if not self.cond_stage_trainable:
         
     | 
| 509 | 
         
            +
                        if config == "__is_first_stage__":# inpaint
         
     | 
| 510 | 
         
            +
                            print("Using first stage also as cond stage.")
         
     | 
| 511 | 
         
            +
                            self.cond_stage_model = self.first_stage_model
         
     | 
| 512 | 
         
            +
                        elif config == "__is_unconditional__":
         
     | 
| 513 | 
         
            +
                            print(f"Training {self.__class__.__name__} as an unconditional model.")
         
     | 
| 514 | 
         
            +
                            self.cond_stage_model = None
         
     | 
| 515 | 
         
            +
                            # self.be_unconditional = True
         
     | 
| 516 | 
         
            +
                        else:
         
     | 
| 517 | 
         
            +
                            model = instantiate_from_config(config)
         
     | 
| 518 | 
         
            +
                            self.cond_stage_model = model.eval()
         
     | 
| 519 | 
         
            +
                            self.cond_stage_model.train = disabled_train
         
     | 
| 520 | 
         
            +
                            for param in self.cond_stage_model.parameters():
         
     | 
| 521 | 
         
            +
                                param.requires_grad = False
         
     | 
| 522 | 
         
            +
                    else:
         
     | 
| 523 | 
         
            +
                        assert config != '__is_first_stage__'
         
     | 
| 524 | 
         
            +
                        assert config != '__is_unconditional__'
         
     | 
| 525 | 
         
            +
                        model = instantiate_from_config(config)
         
     | 
| 526 | 
         
            +
                        self.cond_stage_model = model
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
         
     | 
| 529 | 
         
            +
                    denoise_row = []
         
     | 
| 530 | 
         
            +
                    for zd in tqdm(samples, desc=desc):
         
     | 
| 531 | 
         
            +
                        denoise_row.append(self.decode_first_stage(zd.to(self.device),
         
     | 
| 532 | 
         
            +
                                                                        force_not_quantize=force_no_decoder_quantization))
         
     | 
| 533 | 
         
            +
                    n_imgs_per_row = len(denoise_row)
         
     | 
| 534 | 
         
            +
                    denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
         
     | 
| 535 | 
         
            +
                    denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
         
     | 
| 536 | 
         
            +
                    denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 537 | 
         
            +
                    denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
         
     | 
| 538 | 
         
            +
                    return denoise_grid
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
                def get_first_stage_encoding(self, encoder_posterior):
         
     | 
| 541 | 
         
            +
                    if isinstance(encoder_posterior, DiagonalGaussianDistribution):
         
     | 
| 542 | 
         
            +
                        z = encoder_posterior.sample()
         
     | 
| 543 | 
         
            +
                    elif isinstance(encoder_posterior, torch.Tensor):
         
     | 
| 544 | 
         
            +
                        z = encoder_posterior
         
     | 
| 545 | 
         
            +
                    else:
         
     | 
| 546 | 
         
            +
                        raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
         
     | 
| 547 | 
         
            +
                    return self.scale_factor * z
         
     | 
| 548 | 
         
            +
             
     | 
| 549 | 
         
            +
                def get_learned_conditioning(self, c):
         
     | 
| 550 | 
         
            +
                    if self.cond_stage_forward is None:
         
     | 
| 551 | 
         
            +
                        if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
         
     | 
| 552 | 
         
            +
                            c = self.cond_stage_model.encode(c)
         
     | 
| 553 | 
         
            +
                            if isinstance(c, DiagonalGaussianDistribution):
         
     | 
| 554 | 
         
            +
                                c = c.mode()
         
     | 
| 555 | 
         
            +
                        else:
         
     | 
| 556 | 
         
            +
                            c = self.cond_stage_model(c)
         
     | 
| 557 | 
         
            +
                    else:
         
     | 
| 558 | 
         
            +
                        assert hasattr(self.cond_stage_model, self.cond_stage_forward)
         
     | 
| 559 | 
         
            +
                        c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
         
     | 
| 560 | 
         
            +
                    return c
         
     | 
| 561 | 
         
            +
             
     | 
| 562 | 
         
            +
                def meshgrid(self, h, w):
         
     | 
| 563 | 
         
            +
                    y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
         
     | 
| 564 | 
         
            +
                    x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
         
     | 
| 565 | 
         
            +
             
     | 
| 566 | 
         
            +
                    arr = torch.cat([y, x], dim=-1)
         
     | 
| 567 | 
         
            +
                    return arr
         
     | 
| 568 | 
         
            +
             
     | 
| 569 | 
         
            +
                def delta_border(self, h, w):
         
     | 
| 570 | 
         
            +
                    """
         
     | 
| 571 | 
         
            +
                    :param h: height
         
     | 
| 572 | 
         
            +
                    :param w: width
         
     | 
| 573 | 
         
            +
                    :return: normalized distance to image border,
         
     | 
| 574 | 
         
            +
                     wtith min distance = 0 at border and max dist = 0.5 at image center
         
     | 
| 575 | 
         
            +
                    """
         
     | 
| 576 | 
         
            +
                    lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
         
     | 
| 577 | 
         
            +
                    arr = self.meshgrid(h, w) / lower_right_corner
         
     | 
| 578 | 
         
            +
                    dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
         
     | 
| 579 | 
         
            +
                    dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
         
     | 
| 580 | 
         
            +
                    edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
         
     | 
| 581 | 
         
            +
                    return edge_dist
         
     | 
| 582 | 
         
            +
             
     | 
| 583 | 
         
            +
                def get_weighting(self, h, w, Ly, Lx, device):
         
     | 
| 584 | 
         
            +
                    weighting = self.delta_border(h, w)
         
     | 
| 585 | 
         
            +
                    weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
         
     | 
| 586 | 
         
            +
                                           self.split_input_params["clip_max_weight"], )
         
     | 
| 587 | 
         
            +
                    weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
                    if self.split_input_params["tie_braker"]:
         
     | 
| 590 | 
         
            +
                        L_weighting = self.delta_border(Ly, Lx)
         
     | 
| 591 | 
         
            +
                        L_weighting = torch.clip(L_weighting,
         
     | 
| 592 | 
         
            +
                                                 self.split_input_params["clip_min_tie_weight"],
         
     | 
| 593 | 
         
            +
                                                 self.split_input_params["clip_max_tie_weight"])
         
     | 
| 594 | 
         
            +
             
     | 
| 595 | 
         
            +
                        L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
         
     | 
| 596 | 
         
            +
                        weighting = weighting * L_weighting
         
     | 
| 597 | 
         
            +
                    return weighting
         
     | 
| 598 | 
         
            +
             
     | 
| 599 | 
         
            +
                def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1):  # todo load once not every time, shorten code
         
     | 
| 600 | 
         
            +
                    """
         
     | 
| 601 | 
         
            +
                    :param x: img of size (bs, c, h, w)
         
     | 
| 602 | 
         
            +
                    :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
         
     | 
| 603 | 
         
            +
                    """
         
     | 
| 604 | 
         
            +
                    bs, nc, h, w = x.shape
         
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
                    # number of crops in image
         
     | 
| 607 | 
         
            +
                    Ly = (h - kernel_size[0]) // stride[0] + 1
         
     | 
| 608 | 
         
            +
                    Lx = (w - kernel_size[1]) // stride[1] + 1
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                    if uf == 1 and df == 1:
         
     | 
| 611 | 
         
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 612 | 
         
            +
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
                        fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
         
     | 
| 615 | 
         
            +
             
     | 
| 616 | 
         
            +
                        weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
         
     | 
| 617 | 
         
            +
                        normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
         
     | 
| 618 | 
         
            +
                        weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
         
     | 
| 619 | 
         
            +
             
     | 
| 620 | 
         
            +
                    elif uf > 1 and df == 1:
         
     | 
| 621 | 
         
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 622 | 
         
            +
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 623 | 
         
            +
             
     | 
| 624 | 
         
            +
                        fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
         
     | 
| 625 | 
         
            +
                                            dilation=1, padding=0,
         
     | 
| 626 | 
         
            +
                                            stride=(stride[0] * uf, stride[1] * uf))
         
     | 
| 627 | 
         
            +
                        fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
         
     | 
| 628 | 
         
            +
             
     | 
| 629 | 
         
            +
                        weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
         
     | 
| 630 | 
         
            +
                        normalization = fold(weighting).view(1, 1, h * uf, w * uf)  # normalizes the overlap
         
     | 
| 631 | 
         
            +
                        weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
         
     | 
| 632 | 
         
            +
             
     | 
| 633 | 
         
            +
                    elif df > 1 and uf == 1:
         
     | 
| 634 | 
         
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 635 | 
         
            +
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 636 | 
         
            +
             
     | 
| 637 | 
         
            +
                        fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
         
     | 
| 638 | 
         
            +
                                            dilation=1, padding=0,
         
     | 
| 639 | 
         
            +
                                            stride=(stride[0] // df, stride[1] // df))
         
     | 
| 640 | 
         
            +
                        fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
         
     | 
| 641 | 
         
            +
             
     | 
| 642 | 
         
            +
                        weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
         
     | 
| 643 | 
         
            +
                        normalization = fold(weighting).view(1, 1, h // df, w // df)  # normalizes the overlap
         
     | 
| 644 | 
         
            +
                        weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
         
     | 
| 645 | 
         
            +
             
     | 
| 646 | 
         
            +
                    else:
         
     | 
| 647 | 
         
            +
                        raise NotImplementedError
         
     | 
| 648 | 
         
            +
             
     | 
| 649 | 
         
            +
                    return fold, unfold, normalization, weighting
         
     | 
| 650 | 
         
            +
             
     | 
| 651 | 
         
            +
                @torch.no_grad()
         
     | 
| 652 | 
         
            +
                def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
         
     | 
| 653 | 
         
            +
                              cond_key=None, return_original_cond=False, bs=None):
         
     | 
| 654 | 
         
            +
                    x = super().get_input(batch, k)
         
     | 
| 655 | 
         
            +
                    if bs is not None:
         
     | 
| 656 | 
         
            +
                        x = x[:bs]
         
     | 
| 657 | 
         
            +
                    x = x.to(self.device)
         
     | 
| 658 | 
         
            +
                    encoder_posterior = self.encode_first_stage(x)
         
     | 
| 659 | 
         
            +
                    z = self.get_first_stage_encoding(encoder_posterior).detach()
         
     | 
| 660 | 
         
            +
             
     | 
| 661 | 
         
            +
                    if self.model.conditioning_key is not None:
         
     | 
| 662 | 
         
            +
                        if cond_key is None:
         
     | 
| 663 | 
         
            +
                            cond_key = self.cond_stage_key
         
     | 
| 664 | 
         
            +
                        if cond_key != self.first_stage_key:# cond_key is not image. for inapint it's masked_img
         
     | 
| 665 | 
         
            +
                            if cond_key in ['caption', 'coordinates_bbox']:
         
     | 
| 666 | 
         
            +
                                xc = batch[cond_key]
         
     | 
| 667 | 
         
            +
                            elif cond_key == 'class_label':
         
     | 
| 668 | 
         
            +
                                xc = batch
         
     | 
| 669 | 
         
            +
                            else:
         
     | 
| 670 | 
         
            +
                                xc = super().get_input(batch, cond_key).to(self.device)
         
     | 
| 671 | 
         
            +
                        else:
         
     | 
| 672 | 
         
            +
                            xc = x
         
     | 
| 673 | 
         
            +
                        if not self.cond_stage_trainable or force_c_encode:
         
     | 
| 674 | 
         
            +
                            if isinstance(xc, dict) or isinstance(xc, list):
         
     | 
| 675 | 
         
            +
                                # import pudb; pudb.set_trace()
         
     | 
| 676 | 
         
            +
                                c = self.get_learned_conditioning(xc)
         
     | 
| 677 | 
         
            +
                            else:
         
     | 
| 678 | 
         
            +
                                c = self.get_learned_conditioning(xc.to(self.device))
         
     | 
| 679 | 
         
            +
                        else:
         
     | 
| 680 | 
         
            +
                            c = xc
         
     | 
| 681 | 
         
            +
                        if bs is not None:
         
     | 
| 682 | 
         
            +
                            c = c[:bs]
         
     | 
| 683 | 
         
            +
             
     | 
| 684 | 
         
            +
                        if self.use_positional_encodings:
         
     | 
| 685 | 
         
            +
                            pos_x, pos_y = self.compute_latent_shifts(batch)
         
     | 
| 686 | 
         
            +
                            ckey = __conditioning_keys__[self.model.conditioning_key]
         
     | 
| 687 | 
         
            +
                            c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
         
     | 
| 688 | 
         
            +
             
     | 
| 689 | 
         
            +
                    else:
         
     | 
| 690 | 
         
            +
                        c = None
         
     | 
| 691 | 
         
            +
                        xc = None
         
     | 
| 692 | 
         
            +
                        if self.use_positional_encodings:
         
     | 
| 693 | 
         
            +
                            pos_x, pos_y = self.compute_latent_shifts(batch)
         
     | 
| 694 | 
         
            +
                            c = {'pos_x': pos_x, 'pos_y': pos_y}
         
     | 
| 695 | 
         
            +
                    out = [z, c]
         
     | 
| 696 | 
         
            +
                    if return_first_stage_outputs:
         
     | 
| 697 | 
         
            +
                        xrec = self.decode_first_stage(z)
         
     | 
| 698 | 
         
            +
                        out.extend([x, xrec])
         
     | 
| 699 | 
         
            +
                    if return_original_cond:
         
     | 
| 700 | 
         
            +
                        out.append(xc)
         
     | 
| 701 | 
         
            +
                    return out
         
     | 
| 702 | 
         
            +
             
     | 
| 703 | 
         
            +
                @torch.no_grad()
         
     | 
| 704 | 
         
            +
                def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
         
     | 
| 705 | 
         
            +
                    if predict_cids:
         
     | 
| 706 | 
         
            +
                        if z.dim() == 4:
         
     | 
| 707 | 
         
            +
                            z = torch.argmax(z.exp(), dim=1).long()
         
     | 
| 708 | 
         
            +
                        z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
         
     | 
| 709 | 
         
            +
                        z = rearrange(z, 'b h w c -> b c h w').contiguous()
         
     | 
| 710 | 
         
            +
             
     | 
| 711 | 
         
            +
                    z = 1. / self.scale_factor * z
         
     | 
| 712 | 
         
            +
             
     | 
| 713 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 714 | 
         
            +
                        if self.split_input_params["patch_distributed_vq"]:
         
     | 
| 715 | 
         
            +
                            ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 716 | 
         
            +
                            stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 717 | 
         
            +
                            uf = self.split_input_params["vqf"]
         
     | 
| 718 | 
         
            +
                            bs, nc, h, w = z.shape
         
     | 
| 719 | 
         
            +
                            if ks[0] > h or ks[1] > w:
         
     | 
| 720 | 
         
            +
                                ks = (min(ks[0], h), min(ks[1], w))
         
     | 
| 721 | 
         
            +
                                print("reducing Kernel")
         
     | 
| 722 | 
         
            +
             
     | 
| 723 | 
         
            +
                            if stride[0] > h or stride[1] > w:
         
     | 
| 724 | 
         
            +
                                stride = (min(stride[0], h), min(stride[1], w))
         
     | 
| 725 | 
         
            +
                                print("reducing stride")
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
                            fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
         
     | 
| 728 | 
         
            +
             
     | 
| 729 | 
         
            +
                            z = unfold(z)  # (bn, nc * prod(**ks), L)
         
     | 
| 730 | 
         
            +
                            # 1. Reshape to img shape
         
     | 
| 731 | 
         
            +
                            z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 732 | 
         
            +
             
     | 
| 733 | 
         
            +
                            # 2. apply model loop over last dim
         
     | 
| 734 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 735 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
         
     | 
| 736 | 
         
            +
                                                                             force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 737 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 738 | 
         
            +
                            else:
         
     | 
| 739 | 
         
            +
             
     | 
| 740 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
         
     | 
| 741 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 742 | 
         
            +
             
     | 
| 743 | 
         
            +
                            o = torch.stack(output_list, axis=-1)  # # (bn, nc, ks[0], ks[1], L)
         
     | 
| 744 | 
         
            +
                            o = o * weighting
         
     | 
| 745 | 
         
            +
                            # Reverse 1. reshape to img shape
         
     | 
| 746 | 
         
            +
                            o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 747 | 
         
            +
                            # stitch crops together
         
     | 
| 748 | 
         
            +
                            decoded = fold(o)
         
     | 
| 749 | 
         
            +
                            decoded = decoded / normalization  # norm is shape (1, 1, h, w)
         
     | 
| 750 | 
         
            +
                            return decoded
         
     | 
| 751 | 
         
            +
                        else:
         
     | 
| 752 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 753 | 
         
            +
                                return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 754 | 
         
            +
                            else:
         
     | 
| 755 | 
         
            +
                                return self.first_stage_model.decode(z)
         
     | 
| 756 | 
         
            +
             
     | 
| 757 | 
         
            +
                    else:
         
     | 
| 758 | 
         
            +
                        if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 759 | 
         
            +
                            return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 760 | 
         
            +
                        else:
         
     | 
| 761 | 
         
            +
                            return self.first_stage_model.decode(z)
         
     | 
| 762 | 
         
            +
             
     | 
| 763 | 
         
            +
                # same as above but without decorator
         
     | 
| 764 | 
         
            +
                def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
         
     | 
| 765 | 
         
            +
                    if predict_cids:
         
     | 
| 766 | 
         
            +
                        if z.dim() == 4:
         
     | 
| 767 | 
         
            +
                            z = torch.argmax(z.exp(), dim=1).long()
         
     | 
| 768 | 
         
            +
                        z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
         
     | 
| 769 | 
         
            +
                        z = rearrange(z, 'b h w c -> b c h w').contiguous()
         
     | 
| 770 | 
         
            +
             
     | 
| 771 | 
         
            +
                    z = 1. / self.scale_factor * z
         
     | 
| 772 | 
         
            +
             
     | 
| 773 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 774 | 
         
            +
                        if self.split_input_params["patch_distributed_vq"]:
         
     | 
| 775 | 
         
            +
                            ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 776 | 
         
            +
                            stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 777 | 
         
            +
                            uf = self.split_input_params["vqf"]
         
     | 
| 778 | 
         
            +
                            bs, nc, h, w = z.shape
         
     | 
| 779 | 
         
            +
                            if ks[0] > h or ks[1] > w:
         
     | 
| 780 | 
         
            +
                                ks = (min(ks[0], h), min(ks[1], w))
         
     | 
| 781 | 
         
            +
                                print("reducing Kernel")
         
     | 
| 782 | 
         
            +
             
     | 
| 783 | 
         
            +
                            if stride[0] > h or stride[1] > w:
         
     | 
| 784 | 
         
            +
                                stride = (min(stride[0], h), min(stride[1], w))
         
     | 
| 785 | 
         
            +
                                print("reducing stride")
         
     | 
| 786 | 
         
            +
             
     | 
| 787 | 
         
            +
                            fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
         
     | 
| 788 | 
         
            +
             
     | 
| 789 | 
         
            +
                            z = unfold(z)  # (bn, nc * prod(**ks), L)
         
     | 
| 790 | 
         
            +
                            # 1. Reshape to img shape
         
     | 
| 791 | 
         
            +
                            z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 792 | 
         
            +
             
     | 
| 793 | 
         
            +
                            # 2. apply model loop over last dim
         
     | 
| 794 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):  
         
     | 
| 795 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
         
     | 
| 796 | 
         
            +
                                                                             force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 797 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 798 | 
         
            +
                            else:
         
     | 
| 799 | 
         
            +
             
     | 
| 800 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
         
     | 
| 801 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 802 | 
         
            +
             
     | 
| 803 | 
         
            +
                            o = torch.stack(output_list, axis=-1)  # # (bn, nc, ks[0], ks[1], L)
         
     | 
| 804 | 
         
            +
                            o = o * weighting
         
     | 
| 805 | 
         
            +
                            # Reverse 1. reshape to img shape
         
     | 
| 806 | 
         
            +
                            o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 807 | 
         
            +
                            # stitch crops together
         
     | 
| 808 | 
         
            +
                            decoded = fold(o)
         
     | 
| 809 | 
         
            +
                            decoded = decoded / normalization  # norm is shape (1, 1, h, w)
         
     | 
| 810 | 
         
            +
                            return decoded
         
     | 
| 811 | 
         
            +
                        else:
         
     | 
| 812 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 813 | 
         
            +
                                return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 814 | 
         
            +
                            else:
         
     | 
| 815 | 
         
            +
                                return self.first_stage_model.decode(z)
         
     | 
| 816 | 
         
            +
             
     | 
| 817 | 
         
            +
                    else:
         
     | 
| 818 | 
         
            +
                        if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 819 | 
         
            +
                            return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 820 | 
         
            +
                        else:
         
     | 
| 821 | 
         
            +
                            return self.first_stage_model.decode(z)
         
     | 
| 822 | 
         
            +
             
     | 
| 823 | 
         
            +
                @torch.no_grad()
         
     | 
| 824 | 
         
            +
                def encode_first_stage(self, x):
         
     | 
| 825 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 826 | 
         
            +
                        if self.split_input_params["patch_distributed_vq"]:
         
     | 
| 827 | 
         
            +
                            ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 828 | 
         
            +
                            stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 829 | 
         
            +
                            df = self.split_input_params["vqf"]
         
     | 
| 830 | 
         
            +
                            self.split_input_params['original_image_size'] = x.shape[-2:]
         
     | 
| 831 | 
         
            +
                            bs, nc, h, w = x.shape
         
     | 
| 832 | 
         
            +
                            if ks[0] > h or ks[1] > w:
         
     | 
| 833 | 
         
            +
                                ks = (min(ks[0], h), min(ks[1], w))
         
     | 
| 834 | 
         
            +
                                print("reducing Kernel")
         
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
                            if stride[0] > h or stride[1] > w:
         
     | 
| 837 | 
         
            +
                                stride = (min(stride[0], h), min(stride[1], w))
         
     | 
| 838 | 
         
            +
                                print("reducing stride")
         
     | 
| 839 | 
         
            +
             
     | 
| 840 | 
         
            +
                            fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
         
     | 
| 841 | 
         
            +
                            z = unfold(x)  # (bn, nc * prod(**ks), L)
         
     | 
| 842 | 
         
            +
                            # Reshape to img shape
         
     | 
| 843 | 
         
            +
                            z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 844 | 
         
            +
             
     | 
| 845 | 
         
            +
                            output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
         
     | 
| 846 | 
         
            +
                                           for i in range(z.shape[-1])]
         
     | 
| 847 | 
         
            +
             
     | 
| 848 | 
         
            +
                            o = torch.stack(output_list, axis=-1)
         
     | 
| 849 | 
         
            +
                            o = o * weighting
         
     | 
| 850 | 
         
            +
             
     | 
| 851 | 
         
            +
                            # Reverse reshape to img shape
         
     | 
| 852 | 
         
            +
                            o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 853 | 
         
            +
                            # stitch crops together
         
     | 
| 854 | 
         
            +
                            decoded = fold(o)
         
     | 
| 855 | 
         
            +
                            decoded = decoded / normalization
         
     | 
| 856 | 
         
            +
                            return decoded
         
     | 
| 857 | 
         
            +
             
     | 
| 858 | 
         
            +
                        else:
         
     | 
| 859 | 
         
            +
                            return self.first_stage_model.encode(x)
         
     | 
| 860 | 
         
            +
                    else:
         
     | 
| 861 | 
         
            +
                        return self.first_stage_model.encode(x)
         
     | 
| 862 | 
         
            +
             
     | 
| 863 | 
         
            +
                def shared_step(self, batch, **kwargs):
         
     | 
| 864 | 
         
            +
                    x, c = self.get_input(batch, self.first_stage_key)
         
     | 
| 865 | 
         
            +
                    loss = self(x, c)
         
     | 
| 866 | 
         
            +
                    return loss
         
     | 
| 867 | 
         
            +
             
     | 
| 868 | 
         
            +
                def forward(self, x, c, *args, **kwargs):
         
     | 
| 869 | 
         
            +
                    t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
         
     | 
| 870 | 
         
            +
                    if self.model.conditioning_key is not None:
         
     | 
| 871 | 
         
            +
                        assert c is not None
         
     | 
| 872 | 
         
            +
                        if self.cond_stage_trainable:# true when use text
         
     | 
| 873 | 
         
            +
                            c = self.get_learned_conditioning(c) # c: string list -> [B, T, Context_dim]
         
     | 
| 874 | 
         
            +
                        if self.shorten_cond_schedule:  # TODO: drop this option
         
     | 
| 875 | 
         
            +
                            tc = self.cond_ids[t].to(self.device)
         
     | 
| 876 | 
         
            +
                            c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
         
     | 
| 877 | 
         
            +
                    return self.p_losses(x, c, t, *args, **kwargs)
         
     | 
| 878 | 
         
            +
             
     | 
| 879 | 
         
            +
                def _rescale_annotations(self, bboxes, crop_coordinates):  # TODO: move to dataset
         
     | 
| 880 | 
         
            +
                    def rescale_bbox(bbox):
         
     | 
| 881 | 
         
            +
                        x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
         
     | 
| 882 | 
         
            +
                        y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
         
     | 
| 883 | 
         
            +
                        w = min(bbox[2] / crop_coordinates[2], 1 - x0)
         
     | 
| 884 | 
         
            +
                        h = min(bbox[3] / crop_coordinates[3], 1 - y0)
         
     | 
| 885 | 
         
            +
                        return x0, y0, w, h
         
     | 
| 886 | 
         
            +
             
     | 
| 887 | 
         
            +
                    return [rescale_bbox(b) for b in bboxes]
         
     | 
| 888 | 
         
            +
             
     | 
| 889 | 
         
            +
                def apply_model(self, x_noisy, t, cond, return_ids=False):
         
     | 
| 890 | 
         
            +
             
     | 
| 891 | 
         
            +
                    if isinstance(cond, dict):
         
     | 
| 892 | 
         
            +
                        # hybrid case, cond is exptected to be a dict
         
     | 
| 893 | 
         
            +
                        pass
         
     | 
| 894 | 
         
            +
                    else:
         
     | 
| 895 | 
         
            +
                        if not isinstance(cond, list):
         
     | 
| 896 | 
         
            +
                            cond = [cond]
         
     | 
| 897 | 
         
            +
                        key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
         
     | 
| 898 | 
         
            +
                        cond = {key: cond}
         
     | 
| 899 | 
         
            +
             
     | 
| 900 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 901 | 
         
            +
                        assert len(cond) == 1  # todo can only deal with one conditioning atm
         
     | 
| 902 | 
         
            +
                        assert not return_ids  
         
     | 
| 903 | 
         
            +
                        ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 904 | 
         
            +
                        stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 905 | 
         
            +
             
     | 
| 906 | 
         
            +
                        h, w = x_noisy.shape[-2:]
         
     | 
| 907 | 
         
            +
             
     | 
| 908 | 
         
            +
                        fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
         
     | 
| 909 | 
         
            +
             
     | 
| 910 | 
         
            +
                        z = unfold(x_noisy)  # (bn, nc * prod(**ks), L)
         
     | 
| 911 | 
         
            +
                        # Reshape to img shape
         
     | 
| 912 | 
         
            +
                        z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 913 | 
         
            +
                        z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
         
     | 
| 914 | 
         
            +
             
     | 
| 915 | 
         
            +
                        if self.cond_stage_key in ["image", "LR_image", "segmentation",
         
     | 
| 916 | 
         
            +
                                                   'bbox_img'] and self.model.conditioning_key:  # todo check for completeness
         
     | 
| 917 | 
         
            +
                            c_key = next(iter(cond.keys()))  # get key
         
     | 
| 918 | 
         
            +
                            c = next(iter(cond.values()))  # get value
         
     | 
| 919 | 
         
            +
                            assert (len(c) == 1)  # todo extend to list with more than one elem
         
     | 
| 920 | 
         
            +
                            c = c[0]  # get element
         
     | 
| 921 | 
         
            +
             
     | 
| 922 | 
         
            +
                            c = unfold(c)
         
     | 
| 923 | 
         
            +
                            c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 924 | 
         
            +
             
     | 
| 925 | 
         
            +
                            cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
         
     | 
| 926 | 
         
            +
             
     | 
| 927 | 
         
            +
                        elif self.cond_stage_key == 'coordinates_bbox':
         
     | 
| 928 | 
         
            +
                            assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
         
     | 
| 929 | 
         
            +
             
     | 
| 930 | 
         
            +
                            # assuming padding of unfold is always 0 and its dilation is always 1
         
     | 
| 931 | 
         
            +
                            n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
         
     | 
| 932 | 
         
            +
                            full_img_h, full_img_w = self.split_input_params['original_image_size']
         
     | 
| 933 | 
         
            +
                            # as we are operating on latents, we need the factor from the original image size to the
         
     | 
| 934 | 
         
            +
                            # spatial latent size to properly rescale the crops for regenerating the bbox annotations
         
     | 
| 935 | 
         
            +
                            num_downs = self.first_stage_model.encoder.num_resolutions - 1
         
     | 
| 936 | 
         
            +
                            rescale_latent = 2 ** (num_downs)
         
     | 
| 937 | 
         
            +
             
     | 
| 938 | 
         
            +
                            # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
         
     | 
| 939 | 
         
            +
                            # need to rescale the tl patch coordinates to be in between (0,1)
         
     | 
| 940 | 
         
            +
                            tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
         
     | 
| 941 | 
         
            +
                                                     rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
         
     | 
| 942 | 
         
            +
                                                    for patch_nr in range(z.shape[-1])]
         
     | 
| 943 | 
         
            +
             
     | 
| 944 | 
         
            +
                            # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
         
     | 
| 945 | 
         
            +
                            patch_limits = [(x_tl, y_tl,
         
     | 
| 946 | 
         
            +
                                             rescale_latent * ks[0] / full_img_w,
         
     | 
| 947 | 
         
            +
                                             rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
         
     | 
| 948 | 
         
            +
                            # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
         
     | 
| 949 | 
         
            +
             
     | 
| 950 | 
         
            +
                            # tokenize crop coordinates for the bounding boxes of the respective patches
         
     | 
| 951 | 
         
            +
                            patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
         
     | 
| 952 | 
         
            +
                                                  for bbox in patch_limits]  # list of length l with tensors of shape (1, 2)
         
     | 
| 953 | 
         
            +
                            print(patch_limits_tknzd[0].shape)
         
     | 
| 954 | 
         
            +
                            # cut tknzd crop position from conditioning
         
     | 
| 955 | 
         
            +
                            assert isinstance(cond, dict), 'cond must be dict to be fed into model'
         
     | 
| 956 | 
         
            +
                            cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
         
     | 
| 957 | 
         
            +
                            print(cut_cond.shape)
         
     | 
| 958 | 
         
            +
             
     | 
| 959 | 
         
            +
                            adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
         
     | 
| 960 | 
         
            +
                            adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
         
     | 
| 961 | 
         
            +
                            print(adapted_cond.shape)
         
     | 
| 962 | 
         
            +
                            adapted_cond = self.get_learned_conditioning(adapted_cond)
         
     | 
| 963 | 
         
            +
                            print(adapted_cond.shape)
         
     | 
| 964 | 
         
            +
                            adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
         
     | 
| 965 | 
         
            +
                            print(adapted_cond.shape)
         
     | 
| 966 | 
         
            +
             
     | 
| 967 | 
         
            +
                            cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
         
     | 
| 968 | 
         
            +
             
     | 
| 969 | 
         
            +
                        else:
         
     | 
| 970 | 
         
            +
                            cond_list = [cond for i in range(z.shape[-1])]  # Todo make this more efficient
         
     | 
| 971 | 
         
            +
             
     | 
| 972 | 
         
            +
                        # apply model by loop over crops
         
     | 
| 973 | 
         
            +
                        output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
         
     | 
| 974 | 
         
            +
                        assert not isinstance(output_list[0],
         
     | 
| 975 | 
         
            +
                                              tuple)  # todo cant deal with multiple model outputs check this never happens
         
     | 
| 976 | 
         
            +
             
     | 
| 977 | 
         
            +
                        o = torch.stack(output_list, axis=-1)
         
     | 
| 978 | 
         
            +
                        o = o * weighting
         
     | 
| 979 | 
         
            +
                        # Reverse reshape to img shape
         
     | 
| 980 | 
         
            +
                        o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 981 | 
         
            +
                        # stitch crops together
         
     | 
| 982 | 
         
            +
                        x_recon = fold(o) / normalization
         
     | 
| 983 | 
         
            +
             
     | 
| 984 | 
         
            +
                    else:
         
     | 
| 985 | 
         
            +
                        x_recon = self.model(x_noisy, t, **cond)
         
     | 
| 986 | 
         
            +
             
     | 
| 987 | 
         
            +
                    if isinstance(x_recon, tuple) and not return_ids:
         
     | 
| 988 | 
         
            +
                        return x_recon[0]
         
     | 
| 989 | 
         
            +
                    else:
         
     | 
| 990 | 
         
            +
                        return x_recon
         
     | 
| 991 | 
         
            +
             
     | 
| 992 | 
         
            +
                def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
         
     | 
| 993 | 
         
            +
                    return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
         
     | 
| 994 | 
         
            +
                           extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
         
     | 
| 995 | 
         
            +
             
     | 
| 996 | 
         
            +
                def _prior_bpd(self, x_start):
         
     | 
| 997 | 
         
            +
                    """
         
     | 
| 998 | 
         
            +
                    Get the prior KL term for the variational lower-bound, measured in
         
     | 
| 999 | 
         
            +
                    bits-per-dim.
         
     | 
| 1000 | 
         
            +
                    This term can't be optimized, as it only depends on the encoder.
         
     | 
| 1001 | 
         
            +
                    :param x_start: the [N x C x ...] tensor of inputs.
         
     | 
| 1002 | 
         
            +
                    :return: a batch of [N] KL values (in bits), one per batch element.
         
     | 
| 1003 | 
         
            +
                    """
         
     | 
| 1004 | 
         
            +
                    batch_size = x_start.shape[0]
         
     | 
| 1005 | 
         
            +
                    t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
         
     | 
| 1006 | 
         
            +
                    qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
         
     | 
| 1007 | 
         
            +
                    kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
         
     | 
| 1008 | 
         
            +
                    return mean_flat(kl_prior) / np.log(2.0)
         
     | 
| 1009 | 
         
            +
             
     | 
| 1010 | 
         
            +
                def p_losses(self, x_start, cond, t, noise=None):
         
     | 
| 1011 | 
         
            +
                    noise = default(noise, lambda: torch.randn_like(x_start))
         
     | 
| 1012 | 
         
            +
                    x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         
     | 
| 1013 | 
         
            +
                    model_output = self.apply_model(x_noisy, t, cond)
         
     | 
| 1014 | 
         
            +
             
     | 
| 1015 | 
         
            +
                    loss_dict = {}
         
     | 
| 1016 | 
         
            +
                    prefix = 'train' if self.training else 'val'
         
     | 
| 1017 | 
         
            +
             
     | 
| 1018 | 
         
            +
                    if self.parameterization == "x0":
         
     | 
| 1019 | 
         
            +
                        target = x_start
         
     | 
| 1020 | 
         
            +
                    elif self.parameterization == "eps":
         
     | 
| 1021 | 
         
            +
                        target = noise
         
     | 
| 1022 | 
         
            +
                    else:
         
     | 
| 1023 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 1024 | 
         
            +
             
     | 
| 1025 | 
         
            +
                    loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
         
     | 
| 1026 | 
         
            +
                    loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
         
     | 
| 1027 | 
         
            +
             
     | 
| 1028 | 
         
            +
                    logvar_t = self.logvar[t].to(self.device)
         
     | 
| 1029 | 
         
            +
                    loss = loss_simple / torch.exp(logvar_t) + logvar_t
         
     | 
| 1030 | 
         
            +
                    # loss = loss_simple / torch.exp(self.logvar) + self.logvar
         
     | 
| 1031 | 
         
            +
                    if self.learn_logvar:
         
     | 
| 1032 | 
         
            +
                        loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
         
     | 
| 1033 | 
         
            +
                        loss_dict.update({'logvar': self.logvar.data.mean()})
         
     | 
| 1034 | 
         
            +
             
     | 
| 1035 | 
         
            +
                    loss = self.l_simple_weight * loss.mean()
         
     | 
| 1036 | 
         
            +
             
     | 
| 1037 | 
         
            +
                    loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
         
     | 
| 1038 | 
         
            +
                    loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
         
     | 
| 1039 | 
         
            +
                    loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
         
     | 
| 1040 | 
         
            +
                    loss += (self.original_elbo_weight * loss_vlb)
         
     | 
| 1041 | 
         
            +
                    loss_dict.update({f'{prefix}/loss': loss})
         
     | 
| 1042 | 
         
            +
             
     | 
| 1043 | 
         
            +
                    return loss, loss_dict
         
     | 
| 1044 | 
         
            +
             
     | 
| 1045 | 
         
            +
                def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
         
     | 
| 1046 | 
         
            +
                                    return_x0=False, score_corrector=None, corrector_kwargs=None):
         
     | 
| 1047 | 
         
            +
                    t_in = t
         
     | 
| 1048 | 
         
            +
                    model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
         
     | 
| 1049 | 
         
            +
             
     | 
| 1050 | 
         
            +
                    if score_corrector is not None:
         
     | 
| 1051 | 
         
            +
                        assert self.parameterization == "eps"
         
     | 
| 1052 | 
         
            +
                        model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
         
     | 
| 1053 | 
         
            +
             
     | 
| 1054 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 1055 | 
         
            +
                        model_out, logits = model_out
         
     | 
| 1056 | 
         
            +
             
     | 
| 1057 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 1058 | 
         
            +
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         
     | 
| 1059 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 1060 | 
         
            +
                        x_recon = model_out
         
     | 
| 1061 | 
         
            +
                    else:
         
     | 
| 1062 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 1063 | 
         
            +
             
     | 
| 1064 | 
         
            +
                    if clip_denoised:
         
     | 
| 1065 | 
         
            +
                        x_recon.clamp_(-1., 1.)
         
     | 
| 1066 | 
         
            +
                    if quantize_denoised:
         
     | 
| 1067 | 
         
            +
                        x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
         
     | 
| 1068 | 
         
            +
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
         
     | 
| 1069 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 1070 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance, logits
         
     | 
| 1071 | 
         
            +
                    elif return_x0:
         
     | 
| 1072 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance, x_recon
         
     | 
| 1073 | 
         
            +
                    else:
         
     | 
| 1074 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance
         
     | 
| 1075 | 
         
            +
             
     | 
| 1076 | 
         
            +
                @torch.no_grad()
         
     | 
| 1077 | 
         
            +
                def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
         
     | 
| 1078 | 
         
            +
                             return_codebook_ids=False, quantize_denoised=False, return_x0=False,
         
     | 
| 1079 | 
         
            +
                             temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
         
     | 
| 1080 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 1081 | 
         
            +
                    outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
         
     | 
| 1082 | 
         
            +
                                                   return_codebook_ids=return_codebook_ids,
         
     | 
| 1083 | 
         
            +
                                                   quantize_denoised=quantize_denoised,
         
     | 
| 1084 | 
         
            +
                                                   return_x0=return_x0,
         
     | 
| 1085 | 
         
            +
                                                   score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
         
     | 
| 1086 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 1087 | 
         
            +
                        raise DeprecationWarning("Support dropped.")
         
     | 
| 1088 | 
         
            +
                        model_mean, _, model_log_variance, logits = outputs
         
     | 
| 1089 | 
         
            +
                    elif return_x0:
         
     | 
| 1090 | 
         
            +
                        model_mean, _, model_log_variance, x0 = outputs
         
     | 
| 1091 | 
         
            +
                    else:
         
     | 
| 1092 | 
         
            +
                        model_mean, _, model_log_variance = outputs
         
     | 
| 1093 | 
         
            +
             
     | 
| 1094 | 
         
            +
                    noise = noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 1095 | 
         
            +
                    if noise_dropout > 0.:
         
     | 
| 1096 | 
         
            +
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 1097 | 
         
            +
                    # no noise when t == 0
         
     | 
| 1098 | 
         
            +
                    nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
         
     | 
| 1099 | 
         
            +
             
     | 
| 1100 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 1101 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
         
     | 
| 1102 | 
         
            +
                    if return_x0:
         
     | 
| 1103 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
         
     | 
| 1104 | 
         
            +
                    else:
         
     | 
| 1105 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         
     | 
| 1106 | 
         
            +
             
     | 
| 1107 | 
         
            +
                @torch.no_grad()
         
     | 
| 1108 | 
         
            +
                def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
         
     | 
| 1109 | 
         
            +
                                          img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
         
     | 
| 1110 | 
         
            +
                                          score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
         
     | 
| 1111 | 
         
            +
                                          log_every_t=None):
         
     | 
| 1112 | 
         
            +
                    if not log_every_t:
         
     | 
| 1113 | 
         
            +
                        log_every_t = self.log_every_t
         
     | 
| 1114 | 
         
            +
                    timesteps = self.num_timesteps
         
     | 
| 1115 | 
         
            +
                    if batch_size is not None:
         
     | 
| 1116 | 
         
            +
                        b = batch_size if batch_size is not None else shape[0]
         
     | 
| 1117 | 
         
            +
                        shape = [batch_size] + list(shape)
         
     | 
| 1118 | 
         
            +
                    else:
         
     | 
| 1119 | 
         
            +
                        b = batch_size = shape[0]
         
     | 
| 1120 | 
         
            +
                    if x_T is None:
         
     | 
| 1121 | 
         
            +
                        img = torch.randn(shape, device=self.device)
         
     | 
| 1122 | 
         
            +
                    else:
         
     | 
| 1123 | 
         
            +
                        img = x_T
         
     | 
| 1124 | 
         
            +
                    intermediates = []
         
     | 
| 1125 | 
         
            +
                    if cond is not None:
         
     | 
| 1126 | 
         
            +
                        if isinstance(cond, dict):
         
     | 
| 1127 | 
         
            +
                            cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
         
     | 
| 1128 | 
         
            +
                            list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
         
     | 
| 1129 | 
         
            +
                        else:
         
     | 
| 1130 | 
         
            +
                            cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
         
     | 
| 1131 | 
         
            +
             
     | 
| 1132 | 
         
            +
                    if start_T is not None:
         
     | 
| 1133 | 
         
            +
                        timesteps = min(timesteps, start_T)
         
     | 
| 1134 | 
         
            +
                    iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
         
     | 
| 1135 | 
         
            +
                                    total=timesteps) if verbose else reversed(
         
     | 
| 1136 | 
         
            +
                        range(0, timesteps))
         
     | 
| 1137 | 
         
            +
                    if type(temperature) == float:
         
     | 
| 1138 | 
         
            +
                        temperature = [temperature] * timesteps
         
     | 
| 1139 | 
         
            +
             
     | 
| 1140 | 
         
            +
                    for i in iterator:
         
     | 
| 1141 | 
         
            +
                        ts = torch.full((b,), i, device=self.device, dtype=torch.long)
         
     | 
| 1142 | 
         
            +
                        if self.shorten_cond_schedule:
         
     | 
| 1143 | 
         
            +
                            assert self.model.conditioning_key != 'hybrid'
         
     | 
| 1144 | 
         
            +
                            tc = self.cond_ids[ts].to(cond.device)
         
     | 
| 1145 | 
         
            +
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         
     | 
| 1146 | 
         
            +
             
     | 
| 1147 | 
         
            +
                        img, x0_partial = self.p_sample(img, cond, ts,
         
     | 
| 1148 | 
         
            +
                                                        clip_denoised=self.clip_denoised,
         
     | 
| 1149 | 
         
            +
                                                        quantize_denoised=quantize_denoised, return_x0=True,
         
     | 
| 1150 | 
         
            +
                                                        temperature=temperature[i], noise_dropout=noise_dropout,
         
     | 
| 1151 | 
         
            +
                                                        score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
         
     | 
| 1152 | 
         
            +
                        if mask is not None:
         
     | 
| 1153 | 
         
            +
                            assert x0 is not None
         
     | 
| 1154 | 
         
            +
                            img_orig = self.q_sample(x0, ts)
         
     | 
| 1155 | 
         
            +
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 1156 | 
         
            +
             
     | 
| 1157 | 
         
            +
                        if i % log_every_t == 0 or i == timesteps - 1:
         
     | 
| 1158 | 
         
            +
                            intermediates.append(x0_partial)
         
     | 
| 1159 | 
         
            +
                        if callback: callback(i)
         
     | 
| 1160 | 
         
            +
                        if img_callback: img_callback(img, i)
         
     | 
| 1161 | 
         
            +
                    return img, intermediates
         
     | 
| 1162 | 
         
            +
             
     | 
| 1163 | 
         
            +
                @torch.no_grad()
         
     | 
| 1164 | 
         
            +
                def p_sample_loop(self, cond, shape, return_intermediates=False,
         
     | 
| 1165 | 
         
            +
                                  x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
         
     | 
| 1166 | 
         
            +
                                  mask=None, x0=None, img_callback=None, start_T=None,
         
     | 
| 1167 | 
         
            +
                                  log_every_t=None):
         
     | 
| 1168 | 
         
            +
             
     | 
| 1169 | 
         
            +
                    if not log_every_t:
         
     | 
| 1170 | 
         
            +
                        log_every_t = self.log_every_t
         
     | 
| 1171 | 
         
            +
                    device = self.betas.device
         
     | 
| 1172 | 
         
            +
                    b = shape[0]
         
     | 
| 1173 | 
         
            +
                    if x_T is None:
         
     | 
| 1174 | 
         
            +
                        img = torch.randn(shape, device=device)
         
     | 
| 1175 | 
         
            +
                    else:
         
     | 
| 1176 | 
         
            +
                        img = x_T
         
     | 
| 1177 | 
         
            +
             
     | 
| 1178 | 
         
            +
                    intermediates = [img]
         
     | 
| 1179 | 
         
            +
                    if timesteps is None:
         
     | 
| 1180 | 
         
            +
                        timesteps = self.num_timesteps
         
     | 
| 1181 | 
         
            +
             
     | 
| 1182 | 
         
            +
                    if start_T is not None:
         
     | 
| 1183 | 
         
            +
                        timesteps = min(timesteps, start_T)
         
     | 
| 1184 | 
         
            +
                    iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
         
     | 
| 1185 | 
         
            +
                        range(0, timesteps))
         
     | 
| 1186 | 
         
            +
             
     | 
| 1187 | 
         
            +
                    if mask is not None:
         
     | 
| 1188 | 
         
            +
                        assert x0 is not None
         
     | 
| 1189 | 
         
            +
                        assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
         
     | 
| 1190 | 
         
            +
             
     | 
| 1191 | 
         
            +
                    for i in iterator:
         
     | 
| 1192 | 
         
            +
                        ts = torch.full((b,), i, device=device, dtype=torch.long)
         
     | 
| 1193 | 
         
            +
                        if self.shorten_cond_schedule:
         
     | 
| 1194 | 
         
            +
                            assert self.model.conditioning_key != 'hybrid'
         
     | 
| 1195 | 
         
            +
                            tc = self.cond_ids[ts].to(cond.device)
         
     | 
| 1196 | 
         
            +
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         
     | 
| 1197 | 
         
            +
             
     | 
| 1198 | 
         
            +
                        img = self.p_sample(img, cond, ts,
         
     | 
| 1199 | 
         
            +
                                            clip_denoised=self.clip_denoised,
         
     | 
| 1200 | 
         
            +
                                            quantize_denoised=quantize_denoised)
         
     | 
| 1201 | 
         
            +
                        if mask is not None:
         
     | 
| 1202 | 
         
            +
                            img_orig = self.q_sample(x0, ts)
         
     | 
| 1203 | 
         
            +
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 1204 | 
         
            +
             
     | 
| 1205 | 
         
            +
                        if i % log_every_t == 0 or i == timesteps - 1:
         
     | 
| 1206 | 
         
            +
                            intermediates.append(img)
         
     | 
| 1207 | 
         
            +
                        if callback: callback(i)
         
     | 
| 1208 | 
         
            +
                        if img_callback: img_callback(img, i)
         
     | 
| 1209 | 
         
            +
             
     | 
| 1210 | 
         
            +
                    if return_intermediates:
         
     | 
| 1211 | 
         
            +
                        return img, intermediates
         
     | 
| 1212 | 
         
            +
                    return img
         
     | 
| 1213 | 
         
            +
             
     | 
| 1214 | 
         
            +
                @torch.no_grad()
         
     | 
| 1215 | 
         
            +
                def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
         
     | 
| 1216 | 
         
            +
                           verbose=True, timesteps=None, quantize_denoised=False,
         
     | 
| 1217 | 
         
            +
                           mask=None, x0=None, shape=None,**kwargs):
         
     | 
| 1218 | 
         
            +
                    if shape is None:
         
     | 
| 1219 | 
         
            +
                        shape = (batch_size, self.channels, self.image_size, self.image_size)
         
     | 
| 1220 | 
         
            +
                    if cond is not None:
         
     | 
| 1221 | 
         
            +
                        if isinstance(cond, dict):
         
     | 
| 1222 | 
         
            +
                            cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
         
     | 
| 1223 | 
         
            +
                            list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
         
     | 
| 1224 | 
         
            +
                        else:
         
     | 
| 1225 | 
         
            +
                            cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
         
     | 
| 1226 | 
         
            +
                    return self.p_sample_loop(cond,
         
     | 
| 1227 | 
         
            +
                                              shape,
         
     | 
| 1228 | 
         
            +
                                              return_intermediates=return_intermediates, x_T=x_T,
         
     | 
| 1229 | 
         
            +
                                              verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
         
     | 
| 1230 | 
         
            +
                                              mask=mask, x0=x0)
         
     | 
| 1231 | 
         
            +
             
     | 
| 1232 | 
         
            +
                @torch.no_grad()
         
     | 
| 1233 | 
         
            +
                def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
         
     | 
| 1234 | 
         
            +
             
     | 
| 1235 | 
         
            +
                    if ddim:
         
     | 
| 1236 | 
         
            +
                        ddim_sampler = DDIMSampler(self)
         
     | 
| 1237 | 
         
            +
                        shape = (self.channels, self.image_size, self.image_size)
         
     | 
| 1238 | 
         
            +
                        samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
         
     | 
| 1239 | 
         
            +
                                                                    shape,cond,verbose=False,**kwargs)
         
     | 
| 1240 | 
         
            +
             
     | 
| 1241 | 
         
            +
                    else:
         
     | 
| 1242 | 
         
            +
                        samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
         
     | 
| 1243 | 
         
            +
                                                             return_intermediates=True,**kwargs)
         
     | 
| 1244 | 
         
            +
             
     | 
| 1245 | 
         
            +
                    return samples, intermediates
         
     | 
| 1246 | 
         
            +
             
     | 
| 1247 | 
         
            +
             
     | 
| 1248 | 
         
            +
                @torch.no_grad()
         
     | 
| 1249 | 
         
            +
                def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
         
     | 
| 1250 | 
         
            +
                               quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
         
     | 
| 1251 | 
         
            +
                               plot_diffusion_rows=True, **kwargs):
         
     | 
| 1252 | 
         
            +
             
     | 
| 1253 | 
         
            +
                    use_ddim = ddim_steps is not None
         
     | 
| 1254 | 
         
            +
             
     | 
| 1255 | 
         
            +
                    log = dict()
         
     | 
| 1256 | 
         
            +
                    z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
         
     | 
| 1257 | 
         
            +
                                                       return_first_stage_outputs=True,
         
     | 
| 1258 | 
         
            +
                                                       force_c_encode=True,
         
     | 
| 1259 | 
         
            +
                                                       return_original_cond=True,
         
     | 
| 1260 | 
         
            +
                                                       bs=N)
         
     | 
| 1261 | 
         
            +
                    N = min(x.shape[0], N)
         
     | 
| 1262 | 
         
            +
                    n_row = min(x.shape[0], n_row)
         
     | 
| 1263 | 
         
            +
                    log["inputs"] = x
         
     | 
| 1264 | 
         
            +
                    log["reconstruction"] = xrec
         
     | 
| 1265 | 
         
            +
                    if self.model.conditioning_key is not None:
         
     | 
| 1266 | 
         
            +
                        if hasattr(self.cond_stage_model, "decode"):
         
     | 
| 1267 | 
         
            +
                            xc = self.cond_stage_model.decode(c)
         
     | 
| 1268 | 
         
            +
                            log["conditioning"] = xc
         
     | 
| 1269 | 
         
            +
                        elif self.cond_stage_key in ["caption"]:
         
     | 
| 1270 | 
         
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
         
     | 
| 1271 | 
         
            +
                            log["conditioning"] = xc
         
     | 
| 1272 | 
         
            +
                        elif self.cond_stage_key == 'class_label':
         
     | 
| 1273 | 
         
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
         
     | 
| 1274 | 
         
            +
                            log['conditioning'] = xc
         
     | 
| 1275 | 
         
            +
                        elif isimage(xc):
         
     | 
| 1276 | 
         
            +
                            log["conditioning"] = xc
         
     | 
| 1277 | 
         
            +
                        if ismap(xc):
         
     | 
| 1278 | 
         
            +
                            log["original_conditioning"] = self.to_rgb(xc)
         
     | 
| 1279 | 
         
            +
             
     | 
| 1280 | 
         
            +
                    if plot_diffusion_rows:
         
     | 
| 1281 | 
         
            +
                        # get diffusion row
         
     | 
| 1282 | 
         
            +
                        diffusion_row = list()
         
     | 
| 1283 | 
         
            +
                        z_start = z[:n_row]
         
     | 
| 1284 | 
         
            +
                        for t in range(self.num_timesteps):
         
     | 
| 1285 | 
         
            +
                            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         
     | 
| 1286 | 
         
            +
                                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         
     | 
| 1287 | 
         
            +
                                t = t.to(self.device).long()
         
     | 
| 1288 | 
         
            +
                                noise = torch.randn_like(z_start)
         
     | 
| 1289 | 
         
            +
                                z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
         
     | 
| 1290 | 
         
            +
                                diffusion_row.append(self.decode_first_stage(z_noisy))
         
     | 
| 1291 | 
         
            +
             
     | 
| 1292 | 
         
            +
                        diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
         
     | 
| 1293 | 
         
            +
                        diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
         
     | 
| 1294 | 
         
            +
                        diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 1295 | 
         
            +
                        diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
         
     | 
| 1296 | 
         
            +
                        log["diffusion_row"] = diffusion_grid
         
     | 
| 1297 | 
         
            +
             
     | 
| 1298 | 
         
            +
                    if sample:
         
     | 
| 1299 | 
         
            +
                        # get denoise row
         
     | 
| 1300 | 
         
            +
                        with self.ema_scope("Plotting"):
         
     | 
| 1301 | 
         
            +
                            samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
         
     | 
| 1302 | 
         
            +
                                                                     ddim_steps=ddim_steps,eta=ddim_eta)
         
     | 
| 1303 | 
         
            +
                            # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
         
     | 
| 1304 | 
         
            +
                        x_samples = self.decode_first_stage(samples)
         
     | 
| 1305 | 
         
            +
                        log["samples"] = x_samples
         
     | 
| 1306 | 
         
            +
                        if plot_denoise_rows:
         
     | 
| 1307 | 
         
            +
                            denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
         
     | 
| 1308 | 
         
            +
                            log["denoise_row"] = denoise_grid
         
     | 
| 1309 | 
         
            +
             
     | 
| 1310 | 
         
            +
                        if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
         
     | 
| 1311 | 
         
            +
                                self.first_stage_model, IdentityFirstStage):
         
     | 
| 1312 | 
         
            +
                            # also display when quantizing x0 while sampling
         
     | 
| 1313 | 
         
            +
                            with self.ema_scope("Plotting Quantized Denoised"):
         
     | 
| 1314 | 
         
            +
                                samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
         
     | 
| 1315 | 
         
            +
                                                                         ddim_steps=ddim_steps,eta=ddim_eta,
         
     | 
| 1316 | 
         
            +
                                                                         quantize_denoised=True)
         
     | 
| 1317 | 
         
            +
                                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
         
     | 
| 1318 | 
         
            +
                                #                                      quantize_denoised=True)
         
     | 
| 1319 | 
         
            +
                            x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 1320 | 
         
            +
                            log["samples_x0_quantized"] = x_samples
         
     | 
| 1321 | 
         
            +
             
     | 
| 1322 | 
         
            +
                        if inpaint:
         
     | 
| 1323 | 
         
            +
                            # make a simple center square
         
     | 
| 1324 | 
         
            +
                            b, h, w = z.shape[0], z.shape[2], z.shape[3]
         
     | 
| 1325 | 
         
            +
                            mask = torch.ones(N, h, w).to(self.device)
         
     | 
| 1326 | 
         
            +
                            # zeros will be filled in
         
     | 
| 1327 | 
         
            +
                            mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
         
     | 
| 1328 | 
         
            +
                            mask = mask[:, None, ...]
         
     | 
| 1329 | 
         
            +
                            with self.ema_scope("Plotting Inpaint"):
         
     | 
| 1330 | 
         
            +
             
     | 
| 1331 | 
         
            +
                                samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
         
     | 
| 1332 | 
         
            +
                                                            ddim_steps=ddim_steps, x0=z[:N], mask=mask)
         
     | 
| 1333 | 
         
            +
                            x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 1334 | 
         
            +
                            log["samples_inpainting"] = x_samples
         
     | 
| 1335 | 
         
            +
                            log["mask"] = mask
         
     | 
| 1336 | 
         
            +
             
     | 
| 1337 | 
         
            +
                            # outpaint
         
     | 
| 1338 | 
         
            +
                            with self.ema_scope("Plotting Outpaint"):
         
     | 
| 1339 | 
         
            +
                                samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
         
     | 
| 1340 | 
         
            +
                                                            ddim_steps=ddim_steps, x0=z[:N], mask=mask)
         
     | 
| 1341 | 
         
            +
                            x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 1342 | 
         
            +
                            log["samples_outpainting"] = x_samples
         
     | 
| 1343 | 
         
            +
             
     | 
| 1344 | 
         
            +
                    if plot_progressive_rows:
         
     | 
| 1345 | 
         
            +
                        with self.ema_scope("Plotting Progressives"):
         
     | 
| 1346 | 
         
            +
                            img, progressives = self.progressive_denoising(c,
         
     | 
| 1347 | 
         
            +
                                                                           shape=(self.channels, self.image_size, self.image_size),
         
     | 
| 1348 | 
         
            +
                                                                           batch_size=N)
         
     | 
| 1349 | 
         
            +
                        prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
         
     | 
| 1350 | 
         
            +
                        log["progressive_row"] = prog_row
         
     | 
| 1351 | 
         
            +
             
     | 
| 1352 | 
         
            +
                    if return_keys:
         
     | 
| 1353 | 
         
            +
                        if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
         
     | 
| 1354 | 
         
            +
                            return log
         
     | 
| 1355 | 
         
            +
                        else:
         
     | 
| 1356 | 
         
            +
                            return {key: log[key] for key in return_keys}
         
     | 
| 1357 | 
         
            +
                    return log
         
     | 
| 1358 | 
         
            +
             
     | 
| 1359 | 
         
            +
                def configure_optimizers(self):
         
     | 
| 1360 | 
         
            +
                    lr = self.learning_rate
         
     | 
| 1361 | 
         
            +
                    params = list(self.model.parameters())
         
     | 
| 1362 | 
         
            +
                    if self.cond_stage_trainable:
         
     | 
| 1363 | 
         
            +
                        print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
         
     | 
| 1364 | 
         
            +
                        params = params + list(self.cond_stage_model.parameters())
         
     | 
| 1365 | 
         
            +
                    if self.learn_logvar:
         
     | 
| 1366 | 
         
            +
                        print('Diffusion model optimizing logvar')
         
     | 
| 1367 | 
         
            +
                        params.append(self.logvar)
         
     | 
| 1368 | 
         
            +
                    opt = torch.optim.AdamW(params, lr=lr)
         
     | 
| 1369 | 
         
            +
                    if self.use_scheduler:
         
     | 
| 1370 | 
         
            +
                        assert 'target' in self.scheduler_config
         
     | 
| 1371 | 
         
            +
                        scheduler = instantiate_from_config(self.scheduler_config)
         
     | 
| 1372 | 
         
            +
             
     | 
| 1373 | 
         
            +
                        print("Setting up LambdaLR scheduler...")
         
     | 
| 1374 | 
         
            +
                        scheduler = [
         
     | 
| 1375 | 
         
            +
                            {
         
     | 
| 1376 | 
         
            +
                                'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
         
     | 
| 1377 | 
         
            +
                                'interval': 'step',
         
     | 
| 1378 | 
         
            +
                                'frequency': 1
         
     | 
| 1379 | 
         
            +
                            }]
         
     | 
| 1380 | 
         
            +
                        return [opt], scheduler
         
     | 
| 1381 | 
         
            +
                    return opt
         
     | 
| 1382 | 
         
            +
             
     | 
| 1383 | 
         
            +
                @torch.no_grad()
         
     | 
| 1384 | 
         
            +
                def to_rgb(self, x):
         
     | 
| 1385 | 
         
            +
                    x = x.float()
         
     | 
| 1386 | 
         
            +
                    if not hasattr(self, "colorize"):
         
     | 
| 1387 | 
         
            +
                        self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
         
     | 
| 1388 | 
         
            +
                    x = nn.functional.conv2d(x, weight=self.colorize)
         
     | 
| 1389 | 
         
            +
                    x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
         
     | 
| 1390 | 
         
            +
                    return x
         
     | 
| 1391 | 
         
            +
             
     | 
| 1392 | 
         
            +
             
     | 
| 1393 | 
         
            +
            class DiffusionWrapper(pl.LightningModule):
         
     | 
| 1394 | 
         
            +
                def __init__(self, diff_model_config, conditioning_key):
         
     | 
| 1395 | 
         
            +
                    super().__init__()
         
     | 
| 1396 | 
         
            +
                    self.diffusion_model = instantiate_from_config(diff_model_config)
         
     | 
| 1397 | 
         
            +
                    self.conditioning_key = conditioning_key # 'crossattn' for txt2image, concat for inpainting
         
     | 
| 1398 | 
         
            +
                    assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
         
     | 
| 1399 | 
         
            +
             
     | 
| 1400 | 
         
            +
                def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
         
     | 
| 1401 | 
         
            +
                    """param x: tensor with shape:[B,C,mel_len,T]"""
         
     | 
| 1402 | 
         
            +
                    if self.conditioning_key is None:
         
     | 
| 1403 | 
         
            +
                        out = self.diffusion_model(x, t)
         
     | 
| 1404 | 
         
            +
                    elif self.conditioning_key == 'concat':
         
     | 
| 1405 | 
         
            +
                        xc = torch.cat([x] + c_concat, dim=1)# channel dim,x shape (b,3,64,64) c_concat shape(b,4,64,64)
         
     | 
| 1406 | 
         
            +
                        out = self.diffusion_model(xc, t)
         
     | 
| 1407 | 
         
            +
                    elif self.conditioning_key == 'crossattn':
         
     | 
| 1408 | 
         
            +
                        cc = torch.cat(c_crossattn, 1)# [b,seq_len,dim]
         
     | 
| 1409 | 
         
            +
                        out = self.diffusion_model(x, t, context=cc)
         
     | 
| 1410 | 
         
            +
                    elif self.conditioning_key == 'hybrid':# not implemented in the LatentDiffusion
         
     | 
| 1411 | 
         
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 1412 | 
         
            +
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 1413 | 
         
            +
                        out = self.diffusion_model(xc, t, context=cc)
         
     | 
| 1414 | 
         
            +
                    elif self.conditioning_key == 'adm':
         
     | 
| 1415 | 
         
            +
                        cc = c_crossattn[0]
         
     | 
| 1416 | 
         
            +
                        out = self.diffusion_model(x, t, y=cc)
         
     | 
| 1417 | 
         
            +
                    else:
         
     | 
| 1418 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 1419 | 
         
            +
             
     | 
| 1420 | 
         
            +
                    return out
         
     | 
| 1421 | 
         
            +
             
     | 
| 1422 | 
         
            +
             
     | 
| 1423 | 
         
            +
            class Layout2ImgDiffusion(LatentDiffusion):
         
     | 
| 1424 | 
         
            +
                # TODO: move all layout-specific hacks to this class
         
     | 
| 1425 | 
         
            +
                def __init__(self, cond_stage_key, *args, **kwargs):
         
     | 
| 1426 | 
         
            +
                    assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
         
     | 
| 1427 | 
         
            +
                    super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
         
     | 
| 1428 | 
         
            +
             
     | 
| 1429 | 
         
            +
                def log_images(self, batch, N=8, *args, **kwargs):
         
     | 
| 1430 | 
         
            +
                    logs = super().log_images(batch=batch, N=N, *args, **kwargs)
         
     | 
| 1431 | 
         
            +
             
     | 
| 1432 | 
         
            +
                    key = 'train' if self.training else 'validation'
         
     | 
| 1433 | 
         
            +
                    dset = self.trainer.datamodule.datasets[key]
         
     | 
| 1434 | 
         
            +
                    mapper = dset.conditional_builders[self.cond_stage_key]
         
     | 
| 1435 | 
         
            +
             
     | 
| 1436 | 
         
            +
                    bbox_imgs = []
         
     | 
| 1437 | 
         
            +
                    map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
         
     | 
| 1438 | 
         
            +
                    for tknzd_bbox in batch[self.cond_stage_key][:N]:
         
     | 
| 1439 | 
         
            +
                        bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
         
     | 
| 1440 | 
         
            +
                        bbox_imgs.append(bboximg)
         
     | 
| 1441 | 
         
            +
             
     | 
| 1442 | 
         
            +
                    cond_img = torch.stack(bbox_imgs, dim=0)
         
     | 
| 1443 | 
         
            +
                    logs['bbox_image'] = cond_img
         
     | 
| 1444 | 
         
            +
                    return logs
         
     | 
    	
        ldm/models/diffusion/ddpm_audio.py
    ADDED
    
    | 
         @@ -0,0 +1,1262 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            wild mixture of
         
     | 
| 3 | 
         
            +
            https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         
     | 
| 4 | 
         
            +
            https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
         
     | 
| 5 | 
         
            +
            https://github.com/CompVis/taming-transformers
         
     | 
| 6 | 
         
            +
            -- merci
         
     | 
| 7 | 
         
            +
            """
         
     | 
| 8 | 
         
            +
            import os
         
     | 
| 9 | 
         
            +
            import torch
         
     | 
| 10 | 
         
            +
            import torch.nn as nn
         
     | 
| 11 | 
         
            +
            import numpy as np
         
     | 
| 12 | 
         
            +
            import pytorch_lightning as pl
         
     | 
| 13 | 
         
            +
            from torch.optim.lr_scheduler import LambdaLR
         
     | 
| 14 | 
         
            +
            from einops import rearrange, repeat
         
     | 
| 15 | 
         
            +
            from contextlib import contextmanager
         
     | 
| 16 | 
         
            +
            from functools import partial
         
     | 
| 17 | 
         
            +
            from tqdm import tqdm
         
     | 
| 18 | 
         
            +
            from torchvision.utils import make_grid
         
     | 
| 19 | 
         
            +
            from pytorch_lightning.utilities.distributed import rank_zero_only
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
         
     | 
| 22 | 
         
            +
            from ldm.modules.ema import LitEma
         
     | 
| 23 | 
         
            +
            from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
         
     | 
| 24 | 
         
            +
            from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
         
     | 
| 25 | 
         
            +
            from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
         
     | 
| 26 | 
         
            +
            from ldm.models.diffusion.ddim import DDIMSampler
         
     | 
| 27 | 
         
            +
            from ldm.models.diffusion.ddpm import DDPM, disabled_train
         
     | 
| 28 | 
         
            +
            from omegaconf import ListConfig
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            __conditioning_keys__ = {'concat': 'c_concat',
         
     | 
| 31 | 
         
            +
                                     'crossattn': 'c_crossattn',
         
     | 
| 32 | 
         
            +
                                     'adm': 'y'}
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            class LatentDiffusion_audio(DDPM):
         
     | 
| 36 | 
         
            +
                """main class"""
         
     | 
| 37 | 
         
            +
                def __init__(self,
         
     | 
| 38 | 
         
            +
                             first_stage_config,
         
     | 
| 39 | 
         
            +
                             cond_stage_config,
         
     | 
| 40 | 
         
            +
                             num_timesteps_cond=None,
         
     | 
| 41 | 
         
            +
                             mel_dim=80,
         
     | 
| 42 | 
         
            +
                             mel_length=848,
         
     | 
| 43 | 
         
            +
                             cond_stage_key="image",
         
     | 
| 44 | 
         
            +
                             cond_stage_trainable=False,
         
     | 
| 45 | 
         
            +
                             concat_mode=True,
         
     | 
| 46 | 
         
            +
                             cond_stage_forward=None,
         
     | 
| 47 | 
         
            +
                             conditioning_key=None,
         
     | 
| 48 | 
         
            +
                             scale_factor=1.0,
         
     | 
| 49 | 
         
            +
                             scale_by_std=False,
         
     | 
| 50 | 
         
            +
                             *args, **kwargs):
         
     | 
| 51 | 
         
            +
                    self.num_timesteps_cond = default(num_timesteps_cond, 1)
         
     | 
| 52 | 
         
            +
                    self.scale_by_std = scale_by_std
         
     | 
| 53 | 
         
            +
                    assert self.num_timesteps_cond <= kwargs['timesteps']
         
     | 
| 54 | 
         
            +
                    # for backwards compatibility after implementation of DiffusionWrapper
         
     | 
| 55 | 
         
            +
                    if conditioning_key is None:
         
     | 
| 56 | 
         
            +
                        conditioning_key = 'concat' if concat_mode else 'crossattn'
         
     | 
| 57 | 
         
            +
                    if cond_stage_config == '__is_unconditional__':
         
     | 
| 58 | 
         
            +
                        conditioning_key = None
         
     | 
| 59 | 
         
            +
                    ckpt_path = kwargs.pop("ckpt_path", None)
         
     | 
| 60 | 
         
            +
                    ignore_keys = kwargs.pop("ignore_keys", [])
         
     | 
| 61 | 
         
            +
                    super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
         
     | 
| 62 | 
         
            +
                    self.concat_mode = concat_mode
         
     | 
| 63 | 
         
            +
                    self.mel_dim = mel_dim
         
     | 
| 64 | 
         
            +
                    self.mel_length = mel_length
         
     | 
| 65 | 
         
            +
                    self.cond_stage_trainable = cond_stage_trainable
         
     | 
| 66 | 
         
            +
                    self.cond_stage_key = cond_stage_key
         
     | 
| 67 | 
         
            +
                    try:
         
     | 
| 68 | 
         
            +
                        self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
         
     | 
| 69 | 
         
            +
                    except:
         
     | 
| 70 | 
         
            +
                        self.num_downs = 0
         
     | 
| 71 | 
         
            +
                    if not scale_by_std:
         
     | 
| 72 | 
         
            +
                        self.scale_factor = scale_factor
         
     | 
| 73 | 
         
            +
                    else:
         
     | 
| 74 | 
         
            +
                        self.register_buffer('scale_factor', torch.tensor(scale_factor))
         
     | 
| 75 | 
         
            +
                    self.instantiate_first_stage(first_stage_config)
         
     | 
| 76 | 
         
            +
                    self.instantiate_cond_stage(cond_stage_config)
         
     | 
| 77 | 
         
            +
                    self.cond_stage_forward = cond_stage_forward
         
     | 
| 78 | 
         
            +
                    self.clip_denoised = False
         
     | 
| 79 | 
         
            +
                    self.bbox_tokenizer = None  
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    self.restarted_from_ckpt = False
         
     | 
| 82 | 
         
            +
                    if ckpt_path is not None:
         
     | 
| 83 | 
         
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys)
         
     | 
| 84 | 
         
            +
                        self.restarted_from_ckpt = True
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                def make_cond_schedule(self, ):
         
     | 
| 87 | 
         
            +
                    self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
         
     | 
| 88 | 
         
            +
                    ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
         
     | 
| 89 | 
         
            +
                    self.cond_ids[:self.num_timesteps_cond] = ids
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                @rank_zero_only
         
     | 
| 92 | 
         
            +
                @torch.no_grad()
         
     | 
| 93 | 
         
            +
                def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
         
     | 
| 94 | 
         
            +
                    # only for very first batch
         
     | 
| 95 | 
         
            +
                    if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
         
     | 
| 96 | 
         
            +
                        assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
         
     | 
| 97 | 
         
            +
                        # set rescale weight to 1./std of encodings
         
     | 
| 98 | 
         
            +
                        print("### USING STD-RESCALING ###")
         
     | 
| 99 | 
         
            +
                        x = super().get_input(batch, self.first_stage_key)
         
     | 
| 100 | 
         
            +
                        x = x.to(self.device)
         
     | 
| 101 | 
         
            +
                        encoder_posterior = self.encode_first_stage(x)
         
     | 
| 102 | 
         
            +
                        z = self.get_first_stage_encoding(encoder_posterior).detach()
         
     | 
| 103 | 
         
            +
                        del self.scale_factor
         
     | 
| 104 | 
         
            +
                        self.register_buffer('scale_factor', 1. / z.flatten().std())
         
     | 
| 105 | 
         
            +
                        print(f"setting self.scale_factor to {self.scale_factor}")
         
     | 
| 106 | 
         
            +
                        print("### USING STD-RESCALING ###")
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                def register_schedule(self,
         
     | 
| 109 | 
         
            +
                                      given_betas=None, beta_schedule="linear", timesteps=1000,
         
     | 
| 110 | 
         
            +
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 111 | 
         
            +
                    super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                    self.shorten_cond_schedule = self.num_timesteps_cond > 1
         
     | 
| 114 | 
         
            +
                    if self.shorten_cond_schedule:
         
     | 
| 115 | 
         
            +
                        self.make_cond_schedule()
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                def instantiate_first_stage(self, config):
         
     | 
| 118 | 
         
            +
                    model = instantiate_from_config(config)
         
     | 
| 119 | 
         
            +
                    self.first_stage_model = model.eval()
         
     | 
| 120 | 
         
            +
                    self.first_stage_model.train = disabled_train
         
     | 
| 121 | 
         
            +
                    for param in self.first_stage_model.parameters():
         
     | 
| 122 | 
         
            +
                        param.requires_grad = False
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                def instantiate_cond_stage(self, config):
         
     | 
| 125 | 
         
            +
                    if not self.cond_stage_trainable:
         
     | 
| 126 | 
         
            +
                        if config == "__is_first_stage__":
         
     | 
| 127 | 
         
            +
                            print("Using first stage also as cond stage.")
         
     | 
| 128 | 
         
            +
                            self.cond_stage_model = self.first_stage_model
         
     | 
| 129 | 
         
            +
                        elif config == "__is_unconditional__":
         
     | 
| 130 | 
         
            +
                            print(f"Training {self.__class__.__name__} as an unconditional model.")
         
     | 
| 131 | 
         
            +
                            self.cond_stage_model = None
         
     | 
| 132 | 
         
            +
                            # self.be_unconditional = True
         
     | 
| 133 | 
         
            +
                        else:
         
     | 
| 134 | 
         
            +
                            model = instantiate_from_config(config)
         
     | 
| 135 | 
         
            +
                            self.cond_stage_model = model.eval()
         
     | 
| 136 | 
         
            +
                            self.cond_stage_model.train = disabled_train
         
     | 
| 137 | 
         
            +
                            for param in self.cond_stage_model.parameters():
         
     | 
| 138 | 
         
            +
                                param.requires_grad = False
         
     | 
| 139 | 
         
            +
                    else:
         
     | 
| 140 | 
         
            +
                        assert config != '__is_first_stage__'
         
     | 
| 141 | 
         
            +
                        assert config != '__is_unconditional__'
         
     | 
| 142 | 
         
            +
                        model = instantiate_from_config(config)
         
     | 
| 143 | 
         
            +
                        self.cond_stage_model = model
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
         
     | 
| 146 | 
         
            +
                    denoise_row = []
         
     | 
| 147 | 
         
            +
                    for zd in tqdm(samples, desc=desc):
         
     | 
| 148 | 
         
            +
                        denoise_row.append(self.decode_first_stage(zd.to(self.device),
         
     | 
| 149 | 
         
            +
                                                                        force_not_quantize=force_no_decoder_quantization))
         
     | 
| 150 | 
         
            +
                    n_imgs_per_row = len(denoise_row)
         
     | 
| 151 | 
         
            +
                    denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
         
     | 
| 152 | 
         
            +
                    denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
         
     | 
| 153 | 
         
            +
                    denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 154 | 
         
            +
                    denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
         
     | 
| 155 | 
         
            +
                    return denoise_grid
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                def get_first_stage_encoding(self, encoder_posterior):
         
     | 
| 158 | 
         
            +
                    if isinstance(encoder_posterior, DiagonalGaussianDistribution):
         
     | 
| 159 | 
         
            +
                        z = encoder_posterior.sample()
         
     | 
| 160 | 
         
            +
                    elif isinstance(encoder_posterior, torch.Tensor):
         
     | 
| 161 | 
         
            +
                        z = encoder_posterior
         
     | 
| 162 | 
         
            +
                    else:
         
     | 
| 163 | 
         
            +
                        raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
         
     | 
| 164 | 
         
            +
                    return self.scale_factor * z
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                def get_learned_conditioning(self, c):
         
     | 
| 167 | 
         
            +
                    if self.cond_stage_forward is None:
         
     | 
| 168 | 
         
            +
                        if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
         
     | 
| 169 | 
         
            +
                            c = self.cond_stage_model.encode(c)
         
     | 
| 170 | 
         
            +
                            if isinstance(c, DiagonalGaussianDistribution):
         
     | 
| 171 | 
         
            +
                                c = c.mode()
         
     | 
| 172 | 
         
            +
                        else:
         
     | 
| 173 | 
         
            +
                            c = self.cond_stage_model(c)
         
     | 
| 174 | 
         
            +
                    else:
         
     | 
| 175 | 
         
            +
                        assert hasattr(self.cond_stage_model, self.cond_stage_forward)
         
     | 
| 176 | 
         
            +
                        c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
         
     | 
| 177 | 
         
            +
                    return c
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                @torch.no_grad()
         
     | 
| 181 | 
         
            +
                def get_unconditional_conditioning(self, batch_size, null_label=None):
         
     | 
| 182 | 
         
            +
                    if null_label is not None:
         
     | 
| 183 | 
         
            +
                        xc = null_label
         
     | 
| 184 | 
         
            +
                        if isinstance(xc, ListConfig):
         
     | 
| 185 | 
         
            +
                            xc = list(xc)
         
     | 
| 186 | 
         
            +
                        if isinstance(xc, dict) or isinstance(xc, list):
         
     | 
| 187 | 
         
            +
                            c = self.get_learned_conditioning(xc)
         
     | 
| 188 | 
         
            +
                        else:
         
     | 
| 189 | 
         
            +
                            if hasattr(xc, "to"):
         
     | 
| 190 | 
         
            +
                                xc = xc.to(self.device)
         
     | 
| 191 | 
         
            +
                            c = self.get_learned_conditioning(xc)
         
     | 
| 192 | 
         
            +
                    else:
         
     | 
| 193 | 
         
            +
                        if self.cond_stage_key in ["class_label", "cls"]:
         
     | 
| 194 | 
         
            +
                            xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
         
     | 
| 195 | 
         
            +
                            return self.get_learned_conditioning(xc)
         
     | 
| 196 | 
         
            +
                        else:
         
     | 
| 197 | 
         
            +
                            raise NotImplementedError("todo")
         
     | 
| 198 | 
         
            +
                    if isinstance(c, list):  # in case the encoder gives us a list
         
     | 
| 199 | 
         
            +
                        for i in range(len(c)):
         
     | 
| 200 | 
         
            +
                            c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
         
     | 
| 201 | 
         
            +
                    else:
         
     | 
| 202 | 
         
            +
                        c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
         
     | 
| 203 | 
         
            +
                    return c
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                def meshgrid(self, h, w):
         
     | 
| 206 | 
         
            +
                    y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
         
     | 
| 207 | 
         
            +
                    x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                    arr = torch.cat([y, x], dim=-1)
         
     | 
| 210 | 
         
            +
                    return arr
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                def delta_border(self, h, w):
         
     | 
| 213 | 
         
            +
                    """
         
     | 
| 214 | 
         
            +
                    :param h: height
         
     | 
| 215 | 
         
            +
                    :param w: width
         
     | 
| 216 | 
         
            +
                    :return: normalized distance to image border,
         
     | 
| 217 | 
         
            +
                     wtith min distance = 0 at border and max dist = 0.5 at image center
         
     | 
| 218 | 
         
            +
                    """
         
     | 
| 219 | 
         
            +
                    lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
         
     | 
| 220 | 
         
            +
                    arr = self.meshgrid(h, w) / lower_right_corner
         
     | 
| 221 | 
         
            +
                    dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
         
     | 
| 222 | 
         
            +
                    dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
         
     | 
| 223 | 
         
            +
                    edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
         
     | 
| 224 | 
         
            +
                    return edge_dist
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                def get_weighting(self, h, w, Ly, Lx, device):
         
     | 
| 227 | 
         
            +
                    weighting = self.delta_border(h, w)
         
     | 
| 228 | 
         
            +
                    weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
         
     | 
| 229 | 
         
            +
                                           self.split_input_params["clip_max_weight"], )
         
     | 
| 230 | 
         
            +
                    weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                    if self.split_input_params["tie_braker"]:
         
     | 
| 233 | 
         
            +
                        L_weighting = self.delta_border(Ly, Lx)
         
     | 
| 234 | 
         
            +
                        L_weighting = torch.clip(L_weighting,
         
     | 
| 235 | 
         
            +
                                                 self.split_input_params["clip_min_tie_weight"],
         
     | 
| 236 | 
         
            +
                                                 self.split_input_params["clip_max_tie_weight"])
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                        L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
         
     | 
| 239 | 
         
            +
                        weighting = weighting * L_weighting
         
     | 
| 240 | 
         
            +
                    return weighting
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1):  # todo load once not every time, shorten code
         
     | 
| 243 | 
         
            +
                    """
         
     | 
| 244 | 
         
            +
                    :param x: img of size (bs, c, h, w)
         
     | 
| 245 | 
         
            +
                    :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
         
     | 
| 246 | 
         
            +
                    """
         
     | 
| 247 | 
         
            +
                    bs, nc, h, w = x.shape
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    # number of crops in image
         
     | 
| 250 | 
         
            +
                    Ly = (h - kernel_size[0]) // stride[0] + 1
         
     | 
| 251 | 
         
            +
                    Lx = (w - kernel_size[1]) // stride[1] + 1
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                    if uf == 1 and df == 1:
         
     | 
| 254 | 
         
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 255 | 
         
            +
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                        fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                        weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
         
     | 
| 260 | 
         
            +
                        normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
         
     | 
| 261 | 
         
            +
                        weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                    elif uf > 1 and df == 1:
         
     | 
| 264 | 
         
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 265 | 
         
            +
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                        fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
         
     | 
| 268 | 
         
            +
                                            dilation=1, padding=0,
         
     | 
| 269 | 
         
            +
                                            stride=(stride[0] * uf, stride[1] * uf))
         
     | 
| 270 | 
         
            +
                        fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                        weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
         
     | 
| 273 | 
         
            +
                        normalization = fold(weighting).view(1, 1, h * uf, w * uf)  # normalizes the overlap
         
     | 
| 274 | 
         
            +
                        weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
                    elif df > 1 and uf == 1:
         
     | 
| 277 | 
         
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 278 | 
         
            +
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                        fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
         
     | 
| 281 | 
         
            +
                                            dilation=1, padding=0,
         
     | 
| 282 | 
         
            +
                                            stride=(stride[0] // df, stride[1] // df))
         
     | 
| 283 | 
         
            +
                        fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
                        weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
         
     | 
| 286 | 
         
            +
                        normalization = fold(weighting).view(1, 1, h // df, w // df)  # normalizes the overlap
         
     | 
| 287 | 
         
            +
                        weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    else:
         
     | 
| 290 | 
         
            +
                        raise NotImplementedError
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                    return fold, unfold, normalization, weighting
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                @torch.no_grad()
         
     | 
| 295 | 
         
            +
                def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
         
     | 
| 296 | 
         
            +
                              cond_key=None, return_original_cond=False, bs=None):
         
     | 
| 297 | 
         
            +
                    x = super().get_input(batch, k)
         
     | 
| 298 | 
         
            +
                    if bs is not None:
         
     | 
| 299 | 
         
            +
                        x = x[:bs]
         
     | 
| 300 | 
         
            +
                    x = x.to(self.device)
         
     | 
| 301 | 
         
            +
                    encoder_posterior = self.encode_first_stage(x)
         
     | 
| 302 | 
         
            +
                    z = self.get_first_stage_encoding(encoder_posterior).detach()
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                    if self.model.conditioning_key is not None:
         
     | 
| 305 | 
         
            +
                        if cond_key is None:
         
     | 
| 306 | 
         
            +
                            cond_key = self.cond_stage_key
         
     | 
| 307 | 
         
            +
                        if cond_key != self.first_stage_key:
         
     | 
| 308 | 
         
            +
                            if cond_key in ['caption', 'coordinates_bbox']:
         
     | 
| 309 | 
         
            +
                                xc = batch[cond_key]
         
     | 
| 310 | 
         
            +
                            elif cond_key == 'class_label':
         
     | 
| 311 | 
         
            +
                                xc = batch
         
     | 
| 312 | 
         
            +
                            else:
         
     | 
| 313 | 
         
            +
                                xc = super().get_input(batch, cond_key).to(self.device)
         
     | 
| 314 | 
         
            +
                        else:
         
     | 
| 315 | 
         
            +
                            xc = x
         
     | 
| 316 | 
         
            +
                        if not self.cond_stage_trainable or force_c_encode:
         
     | 
| 317 | 
         
            +
                            if isinstance(xc, dict) or isinstance(xc, list):
         
     | 
| 318 | 
         
            +
                                # import pudb; pudb.set_trace()
         
     | 
| 319 | 
         
            +
                                c = self.get_learned_conditioning(xc)
         
     | 
| 320 | 
         
            +
                            else:
         
     | 
| 321 | 
         
            +
                                c = self.get_learned_conditioning(xc.to(self.device))
         
     | 
| 322 | 
         
            +
                        else:
         
     | 
| 323 | 
         
            +
                            c = xc
         
     | 
| 324 | 
         
            +
                        if bs is not None:
         
     | 
| 325 | 
         
            +
                            c = c[:bs]
         
     | 
| 326 | 
         
            +
                        # Testing #
         
     | 
| 327 | 
         
            +
                        if cond_key == 'masked_image':
         
     | 
| 328 | 
         
            +
                            mask = super().get_input(batch, "mask")
         
     | 
| 329 | 
         
            +
                            cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # [B, 1, 10, 106]
         
     | 
| 330 | 
         
            +
                            c = torch.cat((c, cc), dim=1) # [B, 5, 10, 106]
         
     | 
| 331 | 
         
            +
                        # Testing #
         
     | 
| 332 | 
         
            +
                        if self.use_positional_encodings:
         
     | 
| 333 | 
         
            +
                            pos_x, pos_y = self.compute_latent_shifts(batch)
         
     | 
| 334 | 
         
            +
                            ckey = __conditioning_keys__[self.model.conditioning_key]
         
     | 
| 335 | 
         
            +
                            c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                    else:
         
     | 
| 338 | 
         
            +
                        c = None
         
     | 
| 339 | 
         
            +
                        xc = None
         
     | 
| 340 | 
         
            +
                        if self.use_positional_encodings:
         
     | 
| 341 | 
         
            +
                            pos_x, pos_y = self.compute_latent_shifts(batch)
         
     | 
| 342 | 
         
            +
                            c = {'pos_x': pos_x, 'pos_y': pos_y}
         
     | 
| 343 | 
         
            +
                    out = [z, c]
         
     | 
| 344 | 
         
            +
                    if return_first_stage_outputs:
         
     | 
| 345 | 
         
            +
                        xrec = self.decode_first_stage(z)
         
     | 
| 346 | 
         
            +
                        out.extend([x, xrec])
         
     | 
| 347 | 
         
            +
                    if return_original_cond:
         
     | 
| 348 | 
         
            +
                        out.append(xc)
         
     | 
| 349 | 
         
            +
                    return out
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
                @torch.no_grad()
         
     | 
| 352 | 
         
            +
                def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
         
     | 
| 353 | 
         
            +
                    if predict_cids:
         
     | 
| 354 | 
         
            +
                        if z.dim() == 4:
         
     | 
| 355 | 
         
            +
                            z = torch.argmax(z.exp(), dim=1).long()
         
     | 
| 356 | 
         
            +
                        z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
         
     | 
| 357 | 
         
            +
                        z = rearrange(z, 'b h w c -> b c h w').contiguous()
         
     | 
| 358 | 
         
            +
             
     | 
| 359 | 
         
            +
                    z = 1. / self.scale_factor * z
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 362 | 
         
            +
                        if self.split_input_params["patch_distributed_vq"]:
         
     | 
| 363 | 
         
            +
                            ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 364 | 
         
            +
                            stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 365 | 
         
            +
                            uf = self.split_input_params["vqf"]
         
     | 
| 366 | 
         
            +
                            bs, nc, h, w = z.shape
         
     | 
| 367 | 
         
            +
                            if ks[0] > h or ks[1] > w:
         
     | 
| 368 | 
         
            +
                                ks = (min(ks[0], h), min(ks[1], w))
         
     | 
| 369 | 
         
            +
                                print("reducing Kernel")
         
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
                            if stride[0] > h or stride[1] > w:
         
     | 
| 372 | 
         
            +
                                stride = (min(stride[0], h), min(stride[1], w))
         
     | 
| 373 | 
         
            +
                                print("reducing stride")
         
     | 
| 374 | 
         
            +
             
     | 
| 375 | 
         
            +
                            fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
         
     | 
| 376 | 
         
            +
             
     | 
| 377 | 
         
            +
                            z = unfold(z)  # (bn, nc * prod(**ks), L)
         
     | 
| 378 | 
         
            +
                            # 1. Reshape to img shape
         
     | 
| 379 | 
         
            +
                            z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                            # 2. apply model loop over last dim
         
     | 
| 382 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 383 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
         
     | 
| 384 | 
         
            +
                                                                             force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 385 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 386 | 
         
            +
                            else:
         
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
         
     | 
| 389 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                            o = torch.stack(output_list, axis=-1)  # # (bn, nc, ks[0], ks[1], L)
         
     | 
| 392 | 
         
            +
                            o = o * weighting
         
     | 
| 393 | 
         
            +
                            # Reverse 1. reshape to img shape
         
     | 
| 394 | 
         
            +
                            o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 395 | 
         
            +
                            # stitch crops together
         
     | 
| 396 | 
         
            +
                            decoded = fold(o)
         
     | 
| 397 | 
         
            +
                            decoded = decoded / normalization  # norm is shape (1, 1, h, w)
         
     | 
| 398 | 
         
            +
                            return decoded
         
     | 
| 399 | 
         
            +
                        else:
         
     | 
| 400 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 401 | 
         
            +
                                return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 402 | 
         
            +
                            else:
         
     | 
| 403 | 
         
            +
                                return self.first_stage_model.decode(z)
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                    else:
         
     | 
| 406 | 
         
            +
                        if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 407 | 
         
            +
                            return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 408 | 
         
            +
                        else:
         
     | 
| 409 | 
         
            +
                            return self.first_stage_model.decode(z)
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                # same as above but without decorator
         
     | 
| 412 | 
         
            +
                def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
         
     | 
| 413 | 
         
            +
                    if predict_cids:
         
     | 
| 414 | 
         
            +
                        if z.dim() == 4:
         
     | 
| 415 | 
         
            +
                            z = torch.argmax(z.exp(), dim=1).long()
         
     | 
| 416 | 
         
            +
                        z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
         
     | 
| 417 | 
         
            +
                        z = rearrange(z, 'b h w c -> b c h w').contiguous()
         
     | 
| 418 | 
         
            +
             
     | 
| 419 | 
         
            +
                    z = 1. / self.scale_factor * z
         
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 422 | 
         
            +
                        if self.split_input_params["patch_distributed_vq"]:
         
     | 
| 423 | 
         
            +
                            ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 424 | 
         
            +
                            stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 425 | 
         
            +
                            uf = self.split_input_params["vqf"]
         
     | 
| 426 | 
         
            +
                            bs, nc, h, w = z.shape
         
     | 
| 427 | 
         
            +
                            if ks[0] > h or ks[1] > w:
         
     | 
| 428 | 
         
            +
                                ks = (min(ks[0], h), min(ks[1], w))
         
     | 
| 429 | 
         
            +
                                print("reducing Kernel")
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                            if stride[0] > h or stride[1] > w:
         
     | 
| 432 | 
         
            +
                                stride = (min(stride[0], h), min(stride[1], w))
         
     | 
| 433 | 
         
            +
                                print("reducing stride")
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                            fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
         
     | 
| 436 | 
         
            +
             
     | 
| 437 | 
         
            +
                            z = unfold(z)  # (bn, nc * prod(**ks), L)
         
     | 
| 438 | 
         
            +
                            # 1. Reshape to img shape
         
     | 
| 439 | 
         
            +
                            z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                            # 2. apply model loop over last dim
         
     | 
| 442 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):  
         
     | 
| 443 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
         
     | 
| 444 | 
         
            +
                                                                             force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 445 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 446 | 
         
            +
                            else:
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
         
     | 
| 449 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 450 | 
         
            +
             
     | 
| 451 | 
         
            +
                            o = torch.stack(output_list, axis=-1)  # # (bn, nc, ks[0], ks[1], L)
         
     | 
| 452 | 
         
            +
                            o = o * weighting
         
     | 
| 453 | 
         
            +
                            # Reverse 1. reshape to img shape
         
     | 
| 454 | 
         
            +
                            o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 455 | 
         
            +
                            # stitch crops together
         
     | 
| 456 | 
         
            +
                            decoded = fold(o)
         
     | 
| 457 | 
         
            +
                            decoded = decoded / normalization  # norm is shape (1, 1, h, w)
         
     | 
| 458 | 
         
            +
                            return decoded
         
     | 
| 459 | 
         
            +
                        else:
         
     | 
| 460 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 461 | 
         
            +
                                return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 462 | 
         
            +
                            else:
         
     | 
| 463 | 
         
            +
                                return self.first_stage_model.decode(z)
         
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
                    else:
         
     | 
| 466 | 
         
            +
                        if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 467 | 
         
            +
                            return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 468 | 
         
            +
                        else:
         
     | 
| 469 | 
         
            +
                            return self.first_stage_model.decode(z)
         
     | 
| 470 | 
         
            +
             
     | 
| 471 | 
         
            +
                @torch.no_grad()
         
     | 
| 472 | 
         
            +
                def encode_first_stage(self, x):
         
     | 
| 473 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 474 | 
         
            +
                        if self.split_input_params["patch_distributed_vq"]:
         
     | 
| 475 | 
         
            +
                            ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 476 | 
         
            +
                            stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 477 | 
         
            +
                            df = self.split_input_params["vqf"]
         
     | 
| 478 | 
         
            +
                            self.split_input_params['original_image_size'] = x.shape[-2:]
         
     | 
| 479 | 
         
            +
                            bs, nc, h, w = x.shape
         
     | 
| 480 | 
         
            +
                            if ks[0] > h or ks[1] > w:
         
     | 
| 481 | 
         
            +
                                ks = (min(ks[0], h), min(ks[1], w))
         
     | 
| 482 | 
         
            +
                                print("reducing Kernel")
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
                            if stride[0] > h or stride[1] > w:
         
     | 
| 485 | 
         
            +
                                stride = (min(stride[0], h), min(stride[1], w))
         
     | 
| 486 | 
         
            +
                                print("reducing stride")
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                            fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
         
     | 
| 489 | 
         
            +
                            z = unfold(x)  # (bn, nc * prod(**ks), L)
         
     | 
| 490 | 
         
            +
                            # Reshape to img shape
         
     | 
| 491 | 
         
            +
                            z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                            output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
         
     | 
| 494 | 
         
            +
                                           for i in range(z.shape[-1])]
         
     | 
| 495 | 
         
            +
             
     | 
| 496 | 
         
            +
                            o = torch.stack(output_list, axis=-1)
         
     | 
| 497 | 
         
            +
                            o = o * weighting
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                            # Reverse reshape to img shape
         
     | 
| 500 | 
         
            +
                            o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 501 | 
         
            +
                            # stitch crops together
         
     | 
| 502 | 
         
            +
                            decoded = fold(o)
         
     | 
| 503 | 
         
            +
                            decoded = decoded / normalization
         
     | 
| 504 | 
         
            +
                            return decoded
         
     | 
| 505 | 
         
            +
             
     | 
| 506 | 
         
            +
                        else:
         
     | 
| 507 | 
         
            +
                            return self.first_stage_model.encode(x)
         
     | 
| 508 | 
         
            +
                    else:
         
     | 
| 509 | 
         
            +
                        return self.first_stage_model.encode(x)
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                def shared_step(self, batch, **kwargs):
         
     | 
| 512 | 
         
            +
                    x, c = self.get_input(batch, self.first_stage_key)
         
     | 
| 513 | 
         
            +
                    loss = self(x, c)
         
     | 
| 514 | 
         
            +
                    return loss
         
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
                def test_step(self,batch,batch_idx):
         
     | 
| 517 | 
         
            +
                    cond = batch[self.cond_stage_key] * self.test_repeat
         
     | 
| 518 | 
         
            +
                    cond = self.get_learned_conditioning(cond) # c: string -> [B, T, Context_dim]
         
     | 
| 519 | 
         
            +
                    batch_size = len(cond)
         
     | 
| 520 | 
         
            +
                    enc_emb = self.sample(cond,batch_size,timesteps=self.test_numsteps)# shape = [batch_size,self.channels,self.mel_dim,self.mel_length]
         
     | 
| 521 | 
         
            +
                    xrec = self.decode_first_stage(enc_emb)
         
     | 
| 522 | 
         
            +
                    reconstructions = (xrec + 1)/2 # to mel scale
         
     | 
| 523 | 
         
            +
                    test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
         
     | 
| 524 | 
         
            +
                    savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
         
     | 
| 525 | 
         
            +
                    if not os.path.exists(savedir):
         
     | 
| 526 | 
         
            +
                        os.makedirs(savedir)
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                    file_names = batch['f_name']
         
     | 
| 529 | 
         
            +
                    nfiles = len(file_names)
         
     | 
| 530 | 
         
            +
                    reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
         
     | 
| 531 | 
         
            +
                    for k in range(reconstructions.shape[0]):
         
     | 
| 532 | 
         
            +
                        b,repeat = k % nfiles, k // nfiles
         
     | 
| 533 | 
         
            +
                        vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
         
     | 
| 534 | 
         
            +
                        v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
         
     | 
| 535 | 
         
            +
                        save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition
         
     | 
| 536 | 
         
            +
                        np.save(save_img_path,reconstructions[b])
         
     | 
| 537 | 
         
            +
                    
         
     | 
| 538 | 
         
            +
                    return None
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
                def forward(self, x, c, *args, **kwargs):
         
     | 
| 541 | 
         
            +
                    t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
         
     | 
| 542 | 
         
            +
                    if self.model.conditioning_key is not None:
         
     | 
| 543 | 
         
            +
                        assert c is not None
         
     | 
| 544 | 
         
            +
                        if self.cond_stage_trainable:
         
     | 
| 545 | 
         
            +
                            c = self.get_learned_conditioning(c) # c: string -> [B, T, Context_dim]
         
     | 
| 546 | 
         
            +
                        if self.shorten_cond_schedule:  # TODO: drop this option
         
     | 
| 547 | 
         
            +
                            tc = self.cond_ids[t].to(self.device)
         
     | 
| 548 | 
         
            +
                            c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
         
     | 
| 549 | 
         
            +
                    return self.p_losses(x, c, t, *args, **kwargs)
         
     | 
| 550 | 
         
            +
             
     | 
| 551 | 
         
            +
                def _rescale_annotations(self, bboxes, crop_coordinates):  # TODO: move to dataset
         
     | 
| 552 | 
         
            +
                    def rescale_bbox(bbox):
         
     | 
| 553 | 
         
            +
                        x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
         
     | 
| 554 | 
         
            +
                        y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
         
     | 
| 555 | 
         
            +
                        w = min(bbox[2] / crop_coordinates[2], 1 - x0)
         
     | 
| 556 | 
         
            +
                        h = min(bbox[3] / crop_coordinates[3], 1 - y0)
         
     | 
| 557 | 
         
            +
                        return x0, y0, w, h
         
     | 
| 558 | 
         
            +
             
     | 
| 559 | 
         
            +
                    return [rescale_bbox(b) for b in bboxes]
         
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
                def apply_model(self, x_noisy, t, cond, return_ids=False):
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
                    if isinstance(cond, dict):
         
     | 
| 564 | 
         
            +
                        # hybrid case, cond is exptected to be a dict
         
     | 
| 565 | 
         
            +
                        pass
         
     | 
| 566 | 
         
            +
                    else:
         
     | 
| 567 | 
         
            +
                        if not isinstance(cond, list):
         
     | 
| 568 | 
         
            +
                            cond = [cond]
         
     | 
| 569 | 
         
            +
                        key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
         
     | 
| 570 | 
         
            +
                        cond = {key: cond}
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 573 | 
         
            +
                        assert len(cond) == 1  # todo can only deal with one conditioning atm
         
     | 
| 574 | 
         
            +
                        assert not return_ids  
         
     | 
| 575 | 
         
            +
                        ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 576 | 
         
            +
                        stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
                        h, w = x_noisy.shape[-2:]
         
     | 
| 579 | 
         
            +
             
     | 
| 580 | 
         
            +
                        fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
         
     | 
| 581 | 
         
            +
             
     | 
| 582 | 
         
            +
                        z = unfold(x_noisy)  # (bn, nc * prod(**ks), L)
         
     | 
| 583 | 
         
            +
                        # Reshape to img shape
         
     | 
| 584 | 
         
            +
                        z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 585 | 
         
            +
                        z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
         
     | 
| 586 | 
         
            +
             
     | 
| 587 | 
         
            +
                        if self.cond_stage_key in ["image", "LR_image", "segmentation",
         
     | 
| 588 | 
         
            +
                                                   'bbox_img'] and self.model.conditioning_key:  # todo check for completeness
         
     | 
| 589 | 
         
            +
                            c_key = next(iter(cond.keys()))  # get key
         
     | 
| 590 | 
         
            +
                            c = next(iter(cond.values()))  # get value
         
     | 
| 591 | 
         
            +
                            assert (len(c) == 1)  # todo extend to list with more than one elem
         
     | 
| 592 | 
         
            +
                            c = c[0]  # get element
         
     | 
| 593 | 
         
            +
             
     | 
| 594 | 
         
            +
                            c = unfold(c)
         
     | 
| 595 | 
         
            +
                            c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 596 | 
         
            +
             
     | 
| 597 | 
         
            +
                            cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
         
     | 
| 598 | 
         
            +
             
     | 
| 599 | 
         
            +
                        elif self.cond_stage_key == 'coordinates_bbox':
         
     | 
| 600 | 
         
            +
                            assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                            # assuming padding of unfold is always 0 and its dilation is always 1
         
     | 
| 603 | 
         
            +
                            n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
         
     | 
| 604 | 
         
            +
                            full_img_h, full_img_w = self.split_input_params['original_image_size']
         
     | 
| 605 | 
         
            +
                            # as we are operating on latents, we need the factor from the original image size to the
         
     | 
| 606 | 
         
            +
                            # spatial latent size to properly rescale the crops for regenerating the bbox annotations
         
     | 
| 607 | 
         
            +
                            num_downs = self.first_stage_model.encoder.num_resolutions - 1
         
     | 
| 608 | 
         
            +
                            rescale_latent = 2 ** (num_downs)
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                            # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
         
     | 
| 611 | 
         
            +
                            # need to rescale the tl patch coordinates to be in between (0,1)
         
     | 
| 612 | 
         
            +
                            tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
         
     | 
| 613 | 
         
            +
                                                     rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
         
     | 
| 614 | 
         
            +
                                                    for patch_nr in range(z.shape[-1])]
         
     | 
| 615 | 
         
            +
             
     | 
| 616 | 
         
            +
                            # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
         
     | 
| 617 | 
         
            +
                            patch_limits = [(x_tl, y_tl,
         
     | 
| 618 | 
         
            +
                                             rescale_latent * ks[0] / full_img_w,
         
     | 
| 619 | 
         
            +
                                             rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
         
     | 
| 620 | 
         
            +
                            # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
         
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
                            # tokenize crop coordinates for the bounding boxes of the respective patches
         
     | 
| 623 | 
         
            +
                            patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
         
     | 
| 624 | 
         
            +
                                                  for bbox in patch_limits]  # list of length l with tensors of shape (1, 2)
         
     | 
| 625 | 
         
            +
                            print(patch_limits_tknzd[0].shape)
         
     | 
| 626 | 
         
            +
                            # cut tknzd crop position from conditioning
         
     | 
| 627 | 
         
            +
                            assert isinstance(cond, dict), 'cond must be dict to be fed into model'
         
     | 
| 628 | 
         
            +
                            cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
         
     | 
| 629 | 
         
            +
                            print(cut_cond.shape)
         
     | 
| 630 | 
         
            +
             
     | 
| 631 | 
         
            +
                            adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
         
     | 
| 632 | 
         
            +
                            adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
         
     | 
| 633 | 
         
            +
                            print(adapted_cond.shape)
         
     | 
| 634 | 
         
            +
                            adapted_cond = self.get_learned_conditioning(adapted_cond)
         
     | 
| 635 | 
         
            +
                            print(adapted_cond.shape)
         
     | 
| 636 | 
         
            +
                            adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
         
     | 
| 637 | 
         
            +
                            print(adapted_cond.shape)
         
     | 
| 638 | 
         
            +
             
     | 
| 639 | 
         
            +
                            cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
         
     | 
| 640 | 
         
            +
             
     | 
| 641 | 
         
            +
                        else:
         
     | 
| 642 | 
         
            +
                            cond_list = [cond for i in range(z.shape[-1])]  # Todo make this more efficient
         
     | 
| 643 | 
         
            +
             
     | 
| 644 | 
         
            +
                        # apply model by loop over crops
         
     | 
| 645 | 
         
            +
                        output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
         
     | 
| 646 | 
         
            +
                        assert not isinstance(output_list[0],
         
     | 
| 647 | 
         
            +
                                              tuple)  # todo cant deal with multiple model outputs check this never happens
         
     | 
| 648 | 
         
            +
             
     | 
| 649 | 
         
            +
                        o = torch.stack(output_list, axis=-1)
         
     | 
| 650 | 
         
            +
                        o = o * weighting
         
     | 
| 651 | 
         
            +
                        # Reverse reshape to img shape
         
     | 
| 652 | 
         
            +
                        o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 653 | 
         
            +
                        # stitch crops together
         
     | 
| 654 | 
         
            +
                        x_recon = fold(o) / normalization
         
     | 
| 655 | 
         
            +
             
     | 
| 656 | 
         
            +
                    else:
         
     | 
| 657 | 
         
            +
                        x_recon = self.model(x_noisy, t, **cond)
         
     | 
| 658 | 
         
            +
             
     | 
| 659 | 
         
            +
                    if isinstance(x_recon, tuple) and not return_ids:
         
     | 
| 660 | 
         
            +
                        return x_recon[0]
         
     | 
| 661 | 
         
            +
                    else:
         
     | 
| 662 | 
         
            +
                        return x_recon
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
                def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
         
     | 
| 665 | 
         
            +
                    return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
         
     | 
| 666 | 
         
            +
                           extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
         
     | 
| 667 | 
         
            +
             
     | 
| 668 | 
         
            +
                def _prior_bpd(self, x_start):
         
     | 
| 669 | 
         
            +
                    """
         
     | 
| 670 | 
         
            +
                    Get the prior KL term for the variational lower-bound, measured in
         
     | 
| 671 | 
         
            +
                    bits-per-dim.
         
     | 
| 672 | 
         
            +
                    This term can't be optimized, as it only depends on the encoder.
         
     | 
| 673 | 
         
            +
                    :param x_start: the [N x C x ...] tensor of inputs.
         
     | 
| 674 | 
         
            +
                    :return: a batch of [N] KL values (in bits), one per batch element.
         
     | 
| 675 | 
         
            +
                    """
         
     | 
| 676 | 
         
            +
                    batch_size = x_start.shape[0]
         
     | 
| 677 | 
         
            +
                    t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
         
     | 
| 678 | 
         
            +
                    qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
         
     | 
| 679 | 
         
            +
                    kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
         
     | 
| 680 | 
         
            +
                    return mean_flat(kl_prior) / np.log(2.0)
         
     | 
| 681 | 
         
            +
             
     | 
| 682 | 
         
            +
                def p_losses(self, x_start, cond, t, noise=None):
         
     | 
| 683 | 
         
            +
                    noise = default(noise, lambda: torch.randn_like(x_start))
         
     | 
| 684 | 
         
            +
                    x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         
     | 
| 685 | 
         
            +
                    model_output = self.apply_model(x_noisy, t, cond)
         
     | 
| 686 | 
         
            +
             
     | 
| 687 | 
         
            +
                    loss_dict = {}
         
     | 
| 688 | 
         
            +
                    prefix = 'train' if self.training else 'val'
         
     | 
| 689 | 
         
            +
             
     | 
| 690 | 
         
            +
                    if self.parameterization == "x0":
         
     | 
| 691 | 
         
            +
                        target = x_start
         
     | 
| 692 | 
         
            +
                    elif self.parameterization == "eps":
         
     | 
| 693 | 
         
            +
                        target = noise
         
     | 
| 694 | 
         
            +
                    else:
         
     | 
| 695 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 696 | 
         
            +
             
     | 
| 697 | 
         
            +
                    loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
         
     | 
| 698 | 
         
            +
                    loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
                    logvar_t = self.logvar[t].to(self.device)
         
     | 
| 701 | 
         
            +
                    loss = loss_simple / torch.exp(logvar_t) + logvar_t
         
     | 
| 702 | 
         
            +
                    # loss = loss_simple / torch.exp(self.logvar) + self.logvar
         
     | 
| 703 | 
         
            +
                    if self.learn_logvar:
         
     | 
| 704 | 
         
            +
                        loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
         
     | 
| 705 | 
         
            +
                        loss_dict.update({'logvar': self.logvar.data.mean()})
         
     | 
| 706 | 
         
            +
             
     | 
| 707 | 
         
            +
                    loss = self.l_simple_weight * loss.mean()
         
     | 
| 708 | 
         
            +
             
     | 
| 709 | 
         
            +
                    loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
         
     | 
| 710 | 
         
            +
                    loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
         
     | 
| 711 | 
         
            +
                    loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
         
     | 
| 712 | 
         
            +
                    loss += (self.original_elbo_weight * loss_vlb)
         
     | 
| 713 | 
         
            +
                    loss_dict.update({f'{prefix}/loss': loss})
         
     | 
| 714 | 
         
            +
             
     | 
| 715 | 
         
            +
                    return loss, loss_dict
         
     | 
| 716 | 
         
            +
             
     | 
| 717 | 
         
            +
                def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
         
     | 
| 718 | 
         
            +
                                    return_x0=False, score_corrector=None, corrector_kwargs=None):
         
     | 
| 719 | 
         
            +
                    t_in = t
         
     | 
| 720 | 
         
            +
                    model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
         
     | 
| 721 | 
         
            +
             
     | 
| 722 | 
         
            +
                    if score_corrector is not None:
         
     | 
| 723 | 
         
            +
                        assert self.parameterization == "eps"
         
     | 
| 724 | 
         
            +
                        model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
         
     | 
| 725 | 
         
            +
             
     | 
| 726 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 727 | 
         
            +
                        model_out, logits = model_out
         
     | 
| 728 | 
         
            +
             
     | 
| 729 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 730 | 
         
            +
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         
     | 
| 731 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 732 | 
         
            +
                        x_recon = model_out
         
     | 
| 733 | 
         
            +
                    else:
         
     | 
| 734 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 735 | 
         
            +
             
     | 
| 736 | 
         
            +
                    if clip_denoised:
         
     | 
| 737 | 
         
            +
                        x_recon.clamp_(-1., 1.)
         
     | 
| 738 | 
         
            +
                    if quantize_denoised:
         
     | 
| 739 | 
         
            +
                        x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
         
     | 
| 740 | 
         
            +
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
         
     | 
| 741 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 742 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance, logits
         
     | 
| 743 | 
         
            +
                    elif return_x0:
         
     | 
| 744 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance, x_recon
         
     | 
| 745 | 
         
            +
                    else:
         
     | 
| 746 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance
         
     | 
| 747 | 
         
            +
             
     | 
| 748 | 
         
            +
                @torch.no_grad()
         
     | 
| 749 | 
         
            +
                def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
         
     | 
| 750 | 
         
            +
                             return_codebook_ids=False, quantize_denoised=False, return_x0=False,
         
     | 
| 751 | 
         
            +
                             temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
         
     | 
| 752 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 753 | 
         
            +
                    outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
         
     | 
| 754 | 
         
            +
                                                   return_codebook_ids=return_codebook_ids,
         
     | 
| 755 | 
         
            +
                                                   quantize_denoised=quantize_denoised,
         
     | 
| 756 | 
         
            +
                                                   return_x0=return_x0,
         
     | 
| 757 | 
         
            +
                                                   score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
         
     | 
| 758 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 759 | 
         
            +
                        raise DeprecationWarning("Support dropped.")
         
     | 
| 760 | 
         
            +
                        model_mean, _, model_log_variance, logits = outputs
         
     | 
| 761 | 
         
            +
                    elif return_x0:
         
     | 
| 762 | 
         
            +
                        model_mean, _, model_log_variance, x0 = outputs
         
     | 
| 763 | 
         
            +
                    else:
         
     | 
| 764 | 
         
            +
                        model_mean, _, model_log_variance = outputs
         
     | 
| 765 | 
         
            +
             
     | 
| 766 | 
         
            +
                    noise = noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 767 | 
         
            +
                    if noise_dropout > 0.:
         
     | 
| 768 | 
         
            +
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 769 | 
         
            +
                    # no noise when t == 0
         
     | 
| 770 | 
         
            +
                    nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
         
     | 
| 771 | 
         
            +
             
     | 
| 772 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 773 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
         
     | 
| 774 | 
         
            +
                    if return_x0:
         
     | 
| 775 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
         
     | 
| 776 | 
         
            +
                    else:
         
     | 
| 777 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         
     | 
| 778 | 
         
            +
             
     | 
| 779 | 
         
            +
                @torch.no_grad()
         
     | 
| 780 | 
         
            +
                def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
         
     | 
| 781 | 
         
            +
                                          img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
         
     | 
| 782 | 
         
            +
                                          score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
         
     | 
| 783 | 
         
            +
                                          log_every_t=None):
         
     | 
| 784 | 
         
            +
                    if not log_every_t:
         
     | 
| 785 | 
         
            +
                        log_every_t = self.log_every_t
         
     | 
| 786 | 
         
            +
                    timesteps = self.num_timesteps
         
     | 
| 787 | 
         
            +
                    if batch_size is not None:
         
     | 
| 788 | 
         
            +
                        b = batch_size if batch_size is not None else shape[0]
         
     | 
| 789 | 
         
            +
                        shape = [batch_size] + list(shape)
         
     | 
| 790 | 
         
            +
                    else:
         
     | 
| 791 | 
         
            +
                        b = batch_size = shape[0]
         
     | 
| 792 | 
         
            +
                    if x_T is None:
         
     | 
| 793 | 
         
            +
                        img = torch.randn(shape, device=self.device)
         
     | 
| 794 | 
         
            +
                    else:
         
     | 
| 795 | 
         
            +
                        img = x_T
         
     | 
| 796 | 
         
            +
                    intermediates = []
         
     | 
| 797 | 
         
            +
                    if cond is not None:
         
     | 
| 798 | 
         
            +
                        if isinstance(cond, dict):
         
     | 
| 799 | 
         
            +
                            cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
         
     | 
| 800 | 
         
            +
                            list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
         
     | 
| 801 | 
         
            +
                        else:
         
     | 
| 802 | 
         
            +
                            cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
         
     | 
| 803 | 
         
            +
             
     | 
| 804 | 
         
            +
                    if start_T is not None:
         
     | 
| 805 | 
         
            +
                        timesteps = min(timesteps, start_T)
         
     | 
| 806 | 
         
            +
                    iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
         
     | 
| 807 | 
         
            +
                                    total=timesteps) if verbose else reversed(
         
     | 
| 808 | 
         
            +
                        range(0, timesteps))
         
     | 
| 809 | 
         
            +
                    if type(temperature) == float:
         
     | 
| 810 | 
         
            +
                        temperature = [temperature] * timesteps
         
     | 
| 811 | 
         
            +
             
     | 
| 812 | 
         
            +
                    for i in iterator:
         
     | 
| 813 | 
         
            +
                        ts = torch.full((b,), i, device=self.device, dtype=torch.long)
         
     | 
| 814 | 
         
            +
                        if self.shorten_cond_schedule:
         
     | 
| 815 | 
         
            +
                            assert self.model.conditioning_key != 'hybrid'
         
     | 
| 816 | 
         
            +
                            tc = self.cond_ids[ts].to(cond.device)
         
     | 
| 817 | 
         
            +
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         
     | 
| 818 | 
         
            +
             
     | 
| 819 | 
         
            +
                        img, x0_partial = self.p_sample(img, cond, ts,
         
     | 
| 820 | 
         
            +
                                                        clip_denoised=self.clip_denoised,
         
     | 
| 821 | 
         
            +
                                                        quantize_denoised=quantize_denoised, return_x0=True,
         
     | 
| 822 | 
         
            +
                                                        temperature=temperature[i], noise_dropout=noise_dropout,
         
     | 
| 823 | 
         
            +
                                                        score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
         
     | 
| 824 | 
         
            +
                        if mask is not None:
         
     | 
| 825 | 
         
            +
                            assert x0 is not None
         
     | 
| 826 | 
         
            +
                            img_orig = self.q_sample(x0, ts)
         
     | 
| 827 | 
         
            +
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 828 | 
         
            +
             
     | 
| 829 | 
         
            +
                        if i % log_every_t == 0 or i == timesteps - 1:
         
     | 
| 830 | 
         
            +
                            intermediates.append(x0_partial)
         
     | 
| 831 | 
         
            +
                        if callback: callback(i)
         
     | 
| 832 | 
         
            +
                        if img_callback: img_callback(img, i)
         
     | 
| 833 | 
         
            +
                    return img, intermediates
         
     | 
| 834 | 
         
            +
             
     | 
| 835 | 
         
            +
                @torch.no_grad()
         
     | 
| 836 | 
         
            +
                def p_sample_loop(self, cond, shape, return_intermediates=False,
         
     | 
| 837 | 
         
            +
                                  x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
         
     | 
| 838 | 
         
            +
                                  mask=None, x0=None, img_callback=None, start_T=None,
         
     | 
| 839 | 
         
            +
                                  log_every_t=None):
         
     | 
| 840 | 
         
            +
             
     | 
| 841 | 
         
            +
                    if not log_every_t:
         
     | 
| 842 | 
         
            +
                        log_every_t = self.log_every_t
         
     | 
| 843 | 
         
            +
                    device = self.betas.device
         
     | 
| 844 | 
         
            +
                    b = shape[0]
         
     | 
| 845 | 
         
            +
                    if x_T is None:
         
     | 
| 846 | 
         
            +
                        img = torch.randn(shape, device=device)
         
     | 
| 847 | 
         
            +
                    else:
         
     | 
| 848 | 
         
            +
                        img = x_T
         
     | 
| 849 | 
         
            +
             
     | 
| 850 | 
         
            +
                    intermediates = [img]
         
     | 
| 851 | 
         
            +
                    if timesteps is None:
         
     | 
| 852 | 
         
            +
                        timesteps = self.num_timesteps
         
     | 
| 853 | 
         
            +
             
     | 
| 854 | 
         
            +
                    if start_T is not None:
         
     | 
| 855 | 
         
            +
                        timesteps = min(timesteps, start_T)
         
     | 
| 856 | 
         
            +
                    iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
         
     | 
| 857 | 
         
            +
                        range(0, timesteps))
         
     | 
| 858 | 
         
            +
             
     | 
| 859 | 
         
            +
                    if mask is not None:
         
     | 
| 860 | 
         
            +
                        assert x0 is not None
         
     | 
| 861 | 
         
            +
                        assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
         
     | 
| 862 | 
         
            +
             
     | 
| 863 | 
         
            +
                    for i in iterator:
         
     | 
| 864 | 
         
            +
                        ts = torch.full((b,), i, device=device, dtype=torch.long)
         
     | 
| 865 | 
         
            +
                        if self.shorten_cond_schedule:
         
     | 
| 866 | 
         
            +
                            assert self.model.conditioning_key != 'hybrid'
         
     | 
| 867 | 
         
            +
                            tc = self.cond_ids[ts].to(cond.device)
         
     | 
| 868 | 
         
            +
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         
     | 
| 869 | 
         
            +
             
     | 
| 870 | 
         
            +
                        img = self.p_sample(img, cond, ts,
         
     | 
| 871 | 
         
            +
                                            clip_denoised=self.clip_denoised,
         
     | 
| 872 | 
         
            +
                                            quantize_denoised=quantize_denoised)
         
     | 
| 873 | 
         
            +
                        if mask is not None:
         
     | 
| 874 | 
         
            +
                            img_orig = self.q_sample(x0, ts)
         
     | 
| 875 | 
         
            +
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 876 | 
         
            +
             
     | 
| 877 | 
         
            +
                        if i % log_every_t == 0 or i == timesteps - 1:
         
     | 
| 878 | 
         
            +
                            intermediates.append(img)
         
     | 
| 879 | 
         
            +
                        if callback: callback(i)
         
     | 
| 880 | 
         
            +
                        if img_callback: img_callback(img, i)
         
     | 
| 881 | 
         
            +
             
     | 
| 882 | 
         
            +
                    if return_intermediates:
         
     | 
| 883 | 
         
            +
                        return img, intermediates
         
     | 
| 884 | 
         
            +
                    return img
         
     | 
| 885 | 
         
            +
             
     | 
| 886 | 
         
            +
                @torch.no_grad()
         
     | 
| 887 | 
         
            +
                def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
         
     | 
| 888 | 
         
            +
                           verbose=True, timesteps=None, quantize_denoised=False,
         
     | 
| 889 | 
         
            +
                           mask=None, x0=None, shape=None,**kwargs):
         
     | 
| 890 | 
         
            +
                    if shape is None:
         
     | 
| 891 | 
         
            +
                        shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
         
     | 
| 892 | 
         
            +
                    if cond is not None:
         
     | 
| 893 | 
         
            +
                        if isinstance(cond, dict):
         
     | 
| 894 | 
         
            +
                            cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
         
     | 
| 895 | 
         
            +
                            list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
         
     | 
| 896 | 
         
            +
                        else:
         
     | 
| 897 | 
         
            +
                            cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
         
     | 
| 898 | 
         
            +
                    return self.p_sample_loop(cond,
         
     | 
| 899 | 
         
            +
                                              shape,
         
     | 
| 900 | 
         
            +
                                              return_intermediates=return_intermediates, x_T=x_T,
         
     | 
| 901 | 
         
            +
                                              verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
         
     | 
| 902 | 
         
            +
                                              mask=mask, x0=x0)
         
     | 
| 903 | 
         
            +
             
     | 
| 904 | 
         
            +
                @torch.no_grad()
         
     | 
| 905 | 
         
            +
                def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
         
     | 
| 906 | 
         
            +
             
     | 
| 907 | 
         
            +
                    if ddim:
         
     | 
| 908 | 
         
            +
                        ddim_sampler = DDIMSampler(self)
         
     | 
| 909 | 
         
            +
                        shape = (self.channels, self.mel_dim, self.mel_length)
         
     | 
| 910 | 
         
            +
                        samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
         
     | 
| 911 | 
         
            +
                                                                    shape,cond,verbose=False,**kwargs)
         
     | 
| 912 | 
         
            +
             
     | 
| 913 | 
         
            +
                    else:
         
     | 
| 914 | 
         
            +
                        samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
         
     | 
| 915 | 
         
            +
                                                             return_intermediates=True,**kwargs)
         
     | 
| 916 | 
         
            +
             
     | 
| 917 | 
         
            +
                    return samples, intermediates
         
     | 
| 918 | 
         
            +
             
     | 
| 919 | 
         
            +
             
     | 
| 920 | 
         
            +
                @torch.no_grad()
         
     | 
| 921 | 
         
            +
                def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
         
     | 
| 922 | 
         
            +
                               quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
         
     | 
| 923 | 
         
            +
                               plot_diffusion_rows=True, **kwargs):
         
     | 
| 924 | 
         
            +
             
     | 
| 925 | 
         
            +
                    use_ddim = ddim_steps is not None
         
     | 
| 926 | 
         
            +
             
     | 
| 927 | 
         
            +
                    log = dict()
         
     | 
| 928 | 
         
            +
                    z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
         
     | 
| 929 | 
         
            +
                                                       return_first_stage_outputs=True,
         
     | 
| 930 | 
         
            +
                                                       force_c_encode=True,
         
     | 
| 931 | 
         
            +
                                                       return_original_cond=True,
         
     | 
| 932 | 
         
            +
                                                       bs=N)
         
     | 
| 933 | 
         
            +
                    N = min(x.shape[0], N)
         
     | 
| 934 | 
         
            +
                    n_row = min(x.shape[0], n_row)
         
     | 
| 935 | 
         
            +
                    log["inputs"] = x
         
     | 
| 936 | 
         
            +
                    log["reconstruction"] = xrec
         
     | 
| 937 | 
         
            +
                    if self.model.conditioning_key is not None:
         
     | 
| 938 | 
         
            +
                        if hasattr(self.cond_stage_model, "decode") and self.cond_stage_key != "masked_image":
         
     | 
| 939 | 
         
            +
                            xc = self.cond_stage_model.decode(c)
         
     | 
| 940 | 
         
            +
                            log["conditioning"] = xc
         
     | 
| 941 | 
         
            +
                        elif self.cond_stage_key == "masked_image":
         
     | 
| 942 | 
         
            +
                            log["mask"] = c[:, -1, :, :][:, None, :, :]
         
     | 
| 943 | 
         
            +
                            xc = self.cond_stage_model.decode(c[:, :self.cond_stage_model.embed_dim, :, :])
         
     | 
| 944 | 
         
            +
                            log["conditioning"] = xc
         
     | 
| 945 | 
         
            +
                        elif self.cond_stage_key in ["caption"]:
         
     | 
| 946 | 
         
            +
                            xc = log_txt_as_img((256, 256), batch["caption"])
         
     | 
| 947 | 
         
            +
                            log["conditioning"] = xc
         
     | 
| 948 | 
         
            +
                        elif self.cond_stage_key == 'class_label':
         
     | 
| 949 | 
         
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
         
     | 
| 950 | 
         
            +
                            log['conditioning'] = xc
         
     | 
| 951 | 
         
            +
                        elif isimage(xc):
         
     | 
| 952 | 
         
            +
                            log["conditioning"] = xc
         
     | 
| 953 | 
         
            +
                        if ismap(xc):
         
     | 
| 954 | 
         
            +
                            log["original_conditioning"] = self.to_rgb(xc)
         
     | 
| 955 | 
         
            +
             
     | 
| 956 | 
         
            +
                    if plot_diffusion_rows:
         
     | 
| 957 | 
         
            +
                        # get diffusion row
         
     | 
| 958 | 
         
            +
                        diffusion_row = list()
         
     | 
| 959 | 
         
            +
                        z_start = z[:n_row]
         
     | 
| 960 | 
         
            +
                        for t in range(self.num_timesteps):
         
     | 
| 961 | 
         
            +
                            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         
     | 
| 962 | 
         
            +
                                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         
     | 
| 963 | 
         
            +
                                t = t.to(self.device).long()
         
     | 
| 964 | 
         
            +
                                noise = torch.randn_like(z_start)
         
     | 
| 965 | 
         
            +
                                z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
         
     | 
| 966 | 
         
            +
                                diffusion_row.append(self.decode_first_stage(z_noisy))
         
     | 
| 967 | 
         
            +
             
     | 
| 968 | 
         
            +
                        diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
         
     | 
| 969 | 
         
            +
                        diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
         
     | 
| 970 | 
         
            +
                        diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 971 | 
         
            +
                        diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
         
     | 
| 972 | 
         
            +
                        log["diffusion_row"] = diffusion_grid
         
     | 
| 973 | 
         
            +
             
     | 
| 974 | 
         
            +
                    if sample:
         
     | 
| 975 | 
         
            +
                        # get denoise row
         
     | 
| 976 | 
         
            +
                        with self.ema_scope("Plotting"):
         
     | 
| 977 | 
         
            +
                            samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
         
     | 
| 978 | 
         
            +
                                                                     ddim_steps=ddim_steps,eta=ddim_eta)
         
     | 
| 979 | 
         
            +
                            # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
         
     | 
| 980 | 
         
            +
                        x_samples = self.decode_first_stage(samples)
         
     | 
| 981 | 
         
            +
                        log["samples"] = x_samples
         
     | 
| 982 | 
         
            +
                        if plot_denoise_rows:
         
     | 
| 983 | 
         
            +
                            denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
         
     | 
| 984 | 
         
            +
                            log["denoise_row"] = denoise_grid
         
     | 
| 985 | 
         
            +
             
     | 
| 986 | 
         
            +
                        if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
         
     | 
| 987 | 
         
            +
                                self.first_stage_model, IdentityFirstStage):
         
     | 
| 988 | 
         
            +
                            # also display when quantizing x0 while sampling
         
     | 
| 989 | 
         
            +
                            with self.ema_scope("Plotting Quantized Denoised"):
         
     | 
| 990 | 
         
            +
                                samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
         
     | 
| 991 | 
         
            +
                                                                         ddim_steps=ddim_steps,eta=ddim_eta,
         
     | 
| 992 | 
         
            +
                                                                         quantize_denoised=True)
         
     | 
| 993 | 
         
            +
                                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
         
     | 
| 994 | 
         
            +
                                #                                      quantize_denoised=True)
         
     | 
| 995 | 
         
            +
                            x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 996 | 
         
            +
                            log["samples_x0_quantized"] = x_samples
         
     | 
| 997 | 
         
            +
             
     | 
| 998 | 
         
            +
                        if inpaint:
         
     | 
| 999 | 
         
            +
                            # make a simple center square
         
     | 
| 1000 | 
         
            +
                            b, h, w = z.shape[0], z.shape[2], z.shape[3]
         
     | 
| 1001 | 
         
            +
                            mask = torch.ones(N, h, w).to(self.device)
         
     | 
| 1002 | 
         
            +
                            # zeros will be filled in
         
     | 
| 1003 | 
         
            +
                            mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
         
     | 
| 1004 | 
         
            +
                            mask = mask[:, None, ...]
         
     | 
| 1005 | 
         
            +
                            with self.ema_scope("Plotting Inpaint"):
         
     | 
| 1006 | 
         
            +
             
     | 
| 1007 | 
         
            +
                                samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
         
     | 
| 1008 | 
         
            +
                                                            ddim_steps=ddim_steps, x0=z[:N], mask=mask)
         
     | 
| 1009 | 
         
            +
                            x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 1010 | 
         
            +
                            log["samples_inpainting"] = x_samples
         
     | 
| 1011 | 
         
            +
                            log["mask_inpainting"] = mask
         
     | 
| 1012 | 
         
            +
             
     | 
| 1013 | 
         
            +
                            # outpaint
         
     | 
| 1014 | 
         
            +
                            mask = 1 - mask
         
     | 
| 1015 | 
         
            +
                            with self.ema_scope("Plotting Outpaint"):
         
     | 
| 1016 | 
         
            +
                                samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
         
     | 
| 1017 | 
         
            +
                                                            ddim_steps=ddim_steps, x0=z[:N], mask=mask)
         
     | 
| 1018 | 
         
            +
                            x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 1019 | 
         
            +
                            log["samples_outpainting"] = x_samples
         
     | 
| 1020 | 
         
            +
                            log["mask_outpainting"] = mask
         
     | 
| 1021 | 
         
            +
             
     | 
| 1022 | 
         
            +
                    if plot_progressive_rows:
         
     | 
| 1023 | 
         
            +
                        with self.ema_scope("Plotting Progressives"):
         
     | 
| 1024 | 
         
            +
                            img, progressives = self.progressive_denoising(c,
         
     | 
| 1025 | 
         
            +
                                                                           shape=(self.channels, self.mel_dim, self.mel_length),
         
     | 
| 1026 | 
         
            +
                                                                           batch_size=N)
         
     | 
| 1027 | 
         
            +
                        prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
         
     | 
| 1028 | 
         
            +
                        log["progressive_row"] = prog_row
         
     | 
| 1029 | 
         
            +
             
     | 
| 1030 | 
         
            +
                    if return_keys:
         
     | 
| 1031 | 
         
            +
                        if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
         
     | 
| 1032 | 
         
            +
                            return log
         
     | 
| 1033 | 
         
            +
                        else:
         
     | 
| 1034 | 
         
            +
                            return {key: log[key] for key in return_keys}
         
     | 
| 1035 | 
         
            +
                    return log
         
     | 
| 1036 | 
         
            +
             
     | 
| 1037 | 
         
            +
                def configure_optimizers(self):
         
     | 
| 1038 | 
         
            +
                    lr = self.learning_rate
         
     | 
| 1039 | 
         
            +
                    params = list(self.model.parameters())
         
     | 
| 1040 | 
         
            +
                    if self.cond_stage_trainable:
         
     | 
| 1041 | 
         
            +
                        print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
         
     | 
| 1042 | 
         
            +
                        params = params + list(self.cond_stage_model.parameters())
         
     | 
| 1043 | 
         
            +
                    if self.learn_logvar:
         
     | 
| 1044 | 
         
            +
                        print('Diffusion model optimizing logvar')
         
     | 
| 1045 | 
         
            +
                        params.append(self.logvar)
         
     | 
| 1046 | 
         
            +
                    opt = torch.optim.AdamW(params, lr=lr)
         
     | 
| 1047 | 
         
            +
                    if self.use_scheduler:
         
     | 
| 1048 | 
         
            +
                        assert 'target' in self.scheduler_config
         
     | 
| 1049 | 
         
            +
                        scheduler = instantiate_from_config(self.scheduler_config)
         
     | 
| 1050 | 
         
            +
             
     | 
| 1051 | 
         
            +
                        print("Setting up LambdaLR scheduler...")
         
     | 
| 1052 | 
         
            +
                        scheduler = [
         
     | 
| 1053 | 
         
            +
                            {
         
     | 
| 1054 | 
         
            +
                                'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
         
     | 
| 1055 | 
         
            +
                                'interval': 'step',
         
     | 
| 1056 | 
         
            +
                                'frequency': 1
         
     | 
| 1057 | 
         
            +
                            }]
         
     | 
| 1058 | 
         
            +
                        return [opt], scheduler
         
     | 
| 1059 | 
         
            +
                    return opt
         
     | 
| 1060 | 
         
            +
             
     | 
| 1061 | 
         
            +
                @torch.no_grad()
         
     | 
| 1062 | 
         
            +
                def to_rgb(self, x):
         
     | 
| 1063 | 
         
            +
                    x = x.float()
         
     | 
| 1064 | 
         
            +
                    if not hasattr(self, "colorize"):
         
     | 
| 1065 | 
         
            +
                        self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
         
     | 
| 1066 | 
         
            +
                    x = nn.functional.conv2d(x, weight=self.colorize)
         
     | 
| 1067 | 
         
            +
                    x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
         
     | 
| 1068 | 
         
            +
                    return x
         
     | 
| 1069 | 
         
            +
             
     | 
| 1070 | 
         
            +
             
     | 
| 1071 | 
         
            +
            class LatentFinetuneDiffusion(LatentDiffusion_audio):
         
     | 
| 1072 | 
         
            +
                """
         
     | 
| 1073 | 
         
            +
                     Basis for different finetunas, such as inpainting or depth2image
         
     | 
| 1074 | 
         
            +
                     To disable finetuning mode, set finetune_keys to None
         
     | 
| 1075 | 
         
            +
                """
         
     | 
| 1076 | 
         
            +
             
     | 
| 1077 | 
         
            +
                def __init__(self,
         
     | 
| 1078 | 
         
            +
                             concat_keys: tuple,
         
     | 
| 1079 | 
         
            +
                             finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
         
     | 
| 1080 | 
         
            +
                                            "model_ema.diffusion_modelinput_blocks00weight"
         
     | 
| 1081 | 
         
            +
                                            ),
         
     | 
| 1082 | 
         
            +
                             keep_finetune_dims=4,
         
     | 
| 1083 | 
         
            +
                             # if model was trained without concat mode before and we would like to keep these channels
         
     | 
| 1084 | 
         
            +
                             c_concat_log_start=None,  # to log reconstruction of c_concat codes
         
     | 
| 1085 | 
         
            +
                             c_concat_log_end=None,
         
     | 
| 1086 | 
         
            +
                             *args, **kwargs
         
     | 
| 1087 | 
         
            +
                             ):
         
     | 
| 1088 | 
         
            +
                    ckpt_path = kwargs.pop("ckpt_path", None)
         
     | 
| 1089 | 
         
            +
                    ignore_keys = kwargs.pop("ignore_keys", list())
         
     | 
| 1090 | 
         
            +
                    super().__init__(*args, **kwargs)
         
     | 
| 1091 | 
         
            +
                    self.finetune_keys = finetune_keys
         
     | 
| 1092 | 
         
            +
                    self.concat_keys = concat_keys
         
     | 
| 1093 | 
         
            +
                    self.keep_dims = keep_finetune_dims
         
     | 
| 1094 | 
         
            +
                    self.c_concat_log_start = c_concat_log_start
         
     | 
| 1095 | 
         
            +
                    self.c_concat_log_end = c_concat_log_end
         
     | 
| 1096 | 
         
            +
             
     | 
| 1097 | 
         
            +
                    if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
         
     | 
| 1098 | 
         
            +
                    if exists(ckpt_path):
         
     | 
| 1099 | 
         
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys)
         
     | 
| 1100 | 
         
            +
             
     | 
| 1101 | 
         
            +
                def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
         
     | 
| 1102 | 
         
            +
                    sd = torch.load(path, map_location="cpu")
         
     | 
| 1103 | 
         
            +
                    if "state_dict" in list(sd.keys()):
         
     | 
| 1104 | 
         
            +
                        sd = sd["state_dict"]
         
     | 
| 1105 | 
         
            +
                    keys = list(sd.keys())
         
     | 
| 1106 | 
         
            +
             
     | 
| 1107 | 
         
            +
                    for k in keys:
         
     | 
| 1108 | 
         
            +
                        for ik in ignore_keys:
         
     | 
| 1109 | 
         
            +
                            if k.startswith(ik):
         
     | 
| 1110 | 
         
            +
                                print("Deleting key {} from state_dict.".format(k))
         
     | 
| 1111 | 
         
            +
                                del sd[k]
         
     | 
| 1112 | 
         
            +
             
     | 
| 1113 | 
         
            +
                        # make it explicit, finetune by including extra input channels
         
     | 
| 1114 | 
         
            +
                        if exists(self.finetune_keys) and k in self.finetune_keys:
         
     | 
| 1115 | 
         
            +
                            new_entry = None
         
     | 
| 1116 | 
         
            +
                            for name, param in self.named_parameters():
         
     | 
| 1117 | 
         
            +
                                if name in self.finetune_keys:
         
     | 
| 1118 | 
         
            +
                                    print(
         
     | 
| 1119 | 
         
            +
                                        f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
         
     | 
| 1120 | 
         
            +
                                    new_entry = torch.zeros_like(param)  # zero init
         
     | 
| 1121 | 
         
            +
                            assert exists(new_entry), 'did not find matching parameter to modify'
         
     | 
| 1122 | 
         
            +
                            new_entry[:, :self.keep_dims, ...] = sd[k]
         
     | 
| 1123 | 
         
            +
                            sd[k] = new_entry
         
     | 
| 1124 | 
         
            +
             
     | 
| 1125 | 
         
            +
                    missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False)
         
     | 
| 1126 | 
         
            +
                    print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
         
     | 
| 1127 | 
         
            +
                    if len(missing) > 0:
         
     | 
| 1128 | 
         
            +
                        print(f"Missing Keys: {missing}")
         
     | 
| 1129 | 
         
            +
                    if len(unexpected) > 0:
         
     | 
| 1130 | 
         
            +
                        print(f"Unexpected Keys: {unexpected}")
         
     | 
| 1131 | 
         
            +
             
     | 
| 1132 | 
         
            +
                @torch.no_grad()
         
     | 
| 1133 | 
         
            +
                def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
         
     | 
| 1134 | 
         
            +
                               quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
         
     | 
| 1135 | 
         
            +
                               plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
         
     | 
| 1136 | 
         
            +
                               use_ema_scope=True,
         
     | 
| 1137 | 
         
            +
                               **kwargs):
         
     | 
| 1138 | 
         
            +
                    use_ddim = ddim_steps is not None
         
     | 
| 1139 | 
         
            +
             
     | 
| 1140 | 
         
            +
                    log = dict()
         
     | 
| 1141 | 
         
            +
                    z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
         
     | 
| 1142 | 
         
            +
                    c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
         
     | 
| 1143 | 
         
            +
                    N = min(x.shape[0], N)
         
     | 
| 1144 | 
         
            +
                    n_row = min(x.shape[0], n_row)
         
     | 
| 1145 | 
         
            +
                    log["inputs"] = x
         
     | 
| 1146 | 
         
            +
                    log["reconstruction"] = xrec
         
     | 
| 1147 | 
         
            +
                    if self.model.conditioning_key is not None:
         
     | 
| 1148 | 
         
            +
                        if hasattr(self.cond_stage_model, "decode"):
         
     | 
| 1149 | 
         
            +
                            xc = self.cond_stage_model.decode(c)
         
     | 
| 1150 | 
         
            +
                            log["conditioning"] = xc
         
     | 
| 1151 | 
         
            +
                        elif self.cond_stage_key in ["caption"]:
         
     | 
| 1152 | 
         
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
         
     | 
| 1153 | 
         
            +
                            log["conditioning"] = xc
         
     | 
| 1154 | 
         
            +
                        elif self.cond_stage_key == 'class_label':
         
     | 
| 1155 | 
         
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
         
     | 
| 1156 | 
         
            +
                            log['conditioning'] = xc
         
     | 
| 1157 | 
         
            +
                        elif isimage(xc):
         
     | 
| 1158 | 
         
            +
                            log["conditioning"] = xc
         
     | 
| 1159 | 
         
            +
                        if ismap(xc):
         
     | 
| 1160 | 
         
            +
                            log["original_conditioning"] = self.to_rgb(xc)
         
     | 
| 1161 | 
         
            +
             
     | 
| 1162 | 
         
            +
                    if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
         
     | 
| 1163 | 
         
            +
                        log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
         
     | 
| 1164 | 
         
            +
             
     | 
| 1165 | 
         
            +
                    if plot_diffusion_rows:
         
     | 
| 1166 | 
         
            +
                        # get diffusion row
         
     | 
| 1167 | 
         
            +
                        diffusion_row = list()
         
     | 
| 1168 | 
         
            +
                        z_start = z[:n_row]
         
     | 
| 1169 | 
         
            +
                        for t in range(self.num_timesteps):
         
     | 
| 1170 | 
         
            +
                            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         
     | 
| 1171 | 
         
            +
                                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         
     | 
| 1172 | 
         
            +
                                t = t.to(self.device).long()
         
     | 
| 1173 | 
         
            +
                                noise = torch.randn_like(z_start)
         
     | 
| 1174 | 
         
            +
                                z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
         
     | 
| 1175 | 
         
            +
                                diffusion_row.append(self.decode_first_stage(z_noisy))
         
     | 
| 1176 | 
         
            +
             
     | 
| 1177 | 
         
            +
                        diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
         
     | 
| 1178 | 
         
            +
                        diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
         
     | 
| 1179 | 
         
            +
                        diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 1180 | 
         
            +
                        diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
         
     | 
| 1181 | 
         
            +
                        log["diffusion_row"] = diffusion_grid
         
     | 
| 1182 | 
         
            +
             
     | 
| 1183 | 
         
            +
                    if sample:
         
     | 
| 1184 | 
         
            +
                        # get denoise row
         
     | 
| 1185 | 
         
            +
                        with self.ema_scope("Sampling"):
         
     | 
| 1186 | 
         
            +
                            samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
         
     | 
| 1187 | 
         
            +
                                                                     batch_size=N, ddim=use_ddim,
         
     | 
| 1188 | 
         
            +
                                                                     ddim_steps=ddim_steps, eta=ddim_eta)
         
     | 
| 1189 | 
         
            +
                            # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
         
     | 
| 1190 | 
         
            +
                        x_samples = self.decode_first_stage(samples)
         
     | 
| 1191 | 
         
            +
                        log["samples"] = x_samples
         
     | 
| 1192 | 
         
            +
                        if plot_denoise_rows:
         
     | 
| 1193 | 
         
            +
                            denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
         
     | 
| 1194 | 
         
            +
                            log["denoise_row"] = denoise_grid
         
     | 
| 1195 | 
         
            +
             
     | 
| 1196 | 
         
            +
                    if unconditional_guidance_scale > 1.0:
         
     | 
| 1197 | 
         
            +
                        uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
         
     | 
| 1198 | 
         
            +
                        uc_cat = c_cat
         
     | 
| 1199 | 
         
            +
                        uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
         
     | 
| 1200 | 
         
            +
                        with self.ema_scope("Sampling with classifier-free guidance"):
         
     | 
| 1201 | 
         
            +
                            samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
         
     | 
| 1202 | 
         
            +
                                                             batch_size=N, ddim=use_ddim,
         
     | 
| 1203 | 
         
            +
                                                             ddim_steps=ddim_steps, eta=ddim_eta,
         
     | 
| 1204 | 
         
            +
                                                             unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 1205 | 
         
            +
                                                             unconditional_conditioning=uc_full,
         
     | 
| 1206 | 
         
            +
                                                             )
         
     | 
| 1207 | 
         
            +
                            x_samples_cfg = self.decode_first_stage(samples_cfg)
         
     | 
| 1208 | 
         
            +
                            log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
         
     | 
| 1209 | 
         
            +
             
     | 
| 1210 | 
         
            +
                    return log
         
     | 
| 1211 | 
         
            +
             
     | 
| 1212 | 
         
            +
             
     | 
| 1213 | 
         
            +
            class LatentInpaintDiffusion(LatentFinetuneDiffusion):
         
     | 
| 1214 | 
         
            +
                """
         
     | 
| 1215 | 
         
            +
                can either run as pure inpainting model (only concat mode) or with mixed conditionings,
         
     | 
| 1216 | 
         
            +
                e.g. mask as concat and text via cross-attn.
         
     | 
| 1217 | 
         
            +
                To disable finetuning mode, set finetune_keys to None
         
     | 
| 1218 | 
         
            +
                 """
         
     | 
| 1219 | 
         
            +
             
     | 
| 1220 | 
         
            +
                def __init__(self,
         
     | 
| 1221 | 
         
            +
                             concat_keys=("mask", "masked_image"),
         
     | 
| 1222 | 
         
            +
                             masked_image_key="masked_image",
         
     | 
| 1223 | 
         
            +
                             *args, **kwargs
         
     | 
| 1224 | 
         
            +
                             ):
         
     | 
| 1225 | 
         
            +
                    super().__init__(concat_keys, *args, **kwargs)
         
     | 
| 1226 | 
         
            +
                    self.masked_image_key = masked_image_key
         
     | 
| 1227 | 
         
            +
                    assert self.masked_image_key in concat_keys
         
     | 
| 1228 | 
         
            +
             
     | 
| 1229 | 
         
            +
                @torch.no_grad()
         
     | 
| 1230 | 
         
            +
                def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
         
     | 
| 1231 | 
         
            +
                    # note: restricted to non-trainable encoders currently
         
     | 
| 1232 | 
         
            +
                    assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
         
     | 
| 1233 | 
         
            +
                    z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
         
     | 
| 1234 | 
         
            +
                                                          force_c_encode=True, return_original_cond=True, bs=bs)
         
     | 
| 1235 | 
         
            +
             
     | 
| 1236 | 
         
            +
                    assert exists(self.concat_keys)
         
     | 
| 1237 | 
         
            +
                    c_cat = list()
         
     | 
| 1238 | 
         
            +
                    for ck in self.concat_keys:
         
     | 
| 1239 | 
         
            +
                        if len(batch[ck].shape) == 3:
         
     | 
| 1240 | 
         
            +
                            batch[ck] = batch[ck][..., None]
         
     | 
| 1241 | 
         
            +
                        cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
         
     | 
| 1242 | 
         
            +
                        if bs is not None:
         
     | 
| 1243 | 
         
            +
                            cc = cc[:bs]
         
     | 
| 1244 | 
         
            +
                            cc = cc.to(self.device)
         
     | 
| 1245 | 
         
            +
                        bchw = z.shape
         
     | 
| 1246 | 
         
            +
                        if ck != self.masked_image_key:
         
     | 
| 1247 | 
         
            +
                            cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
         
     | 
| 1248 | 
         
            +
                        else:
         
     | 
| 1249 | 
         
            +
                            cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
         
     | 
| 1250 | 
         
            +
                        c_cat.append(cc)
         
     | 
| 1251 | 
         
            +
                    c_cat = torch.cat(c_cat, dim=1)
         
     | 
| 1252 | 
         
            +
                    all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
         
     | 
| 1253 | 
         
            +
                    if return_first_stage_outputs:
         
     | 
| 1254 | 
         
            +
                        return z, all_conds, x, xrec, xc
         
     | 
| 1255 | 
         
            +
                    return z, all_conds
         
     | 
| 1256 | 
         
            +
             
     | 
| 1257 | 
         
            +
                @torch.no_grad()
         
     | 
| 1258 | 
         
            +
                def log_images(self, *args, **kwargs):
         
     | 
| 1259 | 
         
            +
                    log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
         
     | 
| 1260 | 
         
            +
                    log["masked_image"] = rearrange(args[0]["masked_image"],
         
     | 
| 1261 | 
         
            +
                                                    'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
         
     | 
| 1262 | 
         
            +
                    return log
         
     | 
    	
        ldm/models/diffusion/ddpm_audio_inpaint.py
    ADDED
    
    | 
         @@ -0,0 +1,1081 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            wild mixture of
         
     | 
| 3 | 
         
            +
            https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         
     | 
| 4 | 
         
            +
            https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
         
     | 
| 5 | 
         
            +
            https://github.com/CompVis/taming-transformers
         
     | 
| 6 | 
         
            +
            -- merci
         
     | 
| 7 | 
         
            +
            """
         
     | 
| 8 | 
         
            +
            import os
         
     | 
| 9 | 
         
            +
            import torch
         
     | 
| 10 | 
         
            +
            import torch.nn as nn
         
     | 
| 11 | 
         
            +
            import numpy as np
         
     | 
| 12 | 
         
            +
            import pytorch_lightning as pl
         
     | 
| 13 | 
         
            +
            from torch.optim.lr_scheduler import LambdaLR
         
     | 
| 14 | 
         
            +
            from einops import rearrange, repeat
         
     | 
| 15 | 
         
            +
            from contextlib import contextmanager
         
     | 
| 16 | 
         
            +
            from functools import partial
         
     | 
| 17 | 
         
            +
            from tqdm import tqdm
         
     | 
| 18 | 
         
            +
            from torchvision.utils import make_grid
         
     | 
| 19 | 
         
            +
            from pytorch_lightning.utilities.distributed import rank_zero_only
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
         
     | 
| 22 | 
         
            +
            from ldm.modules.ema import LitEma
         
     | 
| 23 | 
         
            +
            from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
         
     | 
| 24 | 
         
            +
            from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
         
     | 
| 25 | 
         
            +
            from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
         
     | 
| 26 | 
         
            +
            from ldm.models.diffusion.ddim import DDIMSampler
         
     | 
| 27 | 
         
            +
            from ldm.models.diffusion.ddpm import DDPM, disabled_train
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            __conditioning_keys__ = {'concat': 'c_concat',
         
     | 
| 30 | 
         
            +
                                     'crossattn': 'c_crossattn',
         
     | 
| 31 | 
         
            +
                                     'adm': 'y'}
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            # add mel_dim and mel_length params to ensure correct shape
         
     | 
| 34 | 
         
            +
            class LatentDiffusion_audioinpaint(DDPM):
         
     | 
| 35 | 
         
            +
                """main class"""
         
     | 
| 36 | 
         
            +
                def __init__(self,
         
     | 
| 37 | 
         
            +
                             first_stage_config,
         
     | 
| 38 | 
         
            +
                             cond_stage_config,
         
     | 
| 39 | 
         
            +
                             num_timesteps_cond=None,
         
     | 
| 40 | 
         
            +
                             mel_dim=80,
         
     | 
| 41 | 
         
            +
                             mel_length=848,
         
     | 
| 42 | 
         
            +
                             cond_stage_key="image",
         
     | 
| 43 | 
         
            +
                             cond_stage_trainable=False,
         
     | 
| 44 | 
         
            +
                             concat_mode=True,
         
     | 
| 45 | 
         
            +
                             cond_stage_forward=None,
         
     | 
| 46 | 
         
            +
                             conditioning_key=None,
         
     | 
| 47 | 
         
            +
                             scale_factor=1.0,
         
     | 
| 48 | 
         
            +
                             scale_by_std=False,
         
     | 
| 49 | 
         
            +
                             test_repeat=1,
         
     | 
| 50 | 
         
            +
                             test_numsteps = None,
         
     | 
| 51 | 
         
            +
                             *args, **kwargs):
         
     | 
| 52 | 
         
            +
                    self.num_timesteps_cond = default(num_timesteps_cond, 1)
         
     | 
| 53 | 
         
            +
                    self.scale_by_std = scale_by_std
         
     | 
| 54 | 
         
            +
                    assert self.num_timesteps_cond <= kwargs['timesteps']
         
     | 
| 55 | 
         
            +
                    # for backwards compatibility after implementation of DiffusionWrapper
         
     | 
| 56 | 
         
            +
                    if conditioning_key is None:
         
     | 
| 57 | 
         
            +
                        conditioning_key = 'concat' if concat_mode else 'crossattn'
         
     | 
| 58 | 
         
            +
                    if cond_stage_config == '__is_unconditional__':
         
     | 
| 59 | 
         
            +
                        conditioning_key = None
         
     | 
| 60 | 
         
            +
                    ckpt_path = kwargs.pop("ckpt_path", None)
         
     | 
| 61 | 
         
            +
                    ignore_keys = kwargs.pop("ignore_keys", [])
         
     | 
| 62 | 
         
            +
                    super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
         
     | 
| 63 | 
         
            +
                    self.test_repeat = test_repeat
         
     | 
| 64 | 
         
            +
                    if test_numsteps == None:
         
     | 
| 65 | 
         
            +
                        self.test_numsteps = self.num_timesteps
         
     | 
| 66 | 
         
            +
                    self.concat_mode = concat_mode
         
     | 
| 67 | 
         
            +
                    self.mel_dim = mel_dim
         
     | 
| 68 | 
         
            +
                    self.mel_length = mel_length
         
     | 
| 69 | 
         
            +
                    self.cond_stage_trainable = cond_stage_trainable
         
     | 
| 70 | 
         
            +
                    self.cond_stage_key = cond_stage_key
         
     | 
| 71 | 
         
            +
                    try:
         
     | 
| 72 | 
         
            +
                        self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
         
     | 
| 73 | 
         
            +
                    except:
         
     | 
| 74 | 
         
            +
                        self.num_downs = 0
         
     | 
| 75 | 
         
            +
                    if not scale_by_std:
         
     | 
| 76 | 
         
            +
                        self.scale_factor = scale_factor
         
     | 
| 77 | 
         
            +
                    else:
         
     | 
| 78 | 
         
            +
                        self.register_buffer('scale_factor', torch.tensor(scale_factor))
         
     | 
| 79 | 
         
            +
                    self.instantiate_first_stage(first_stage_config)
         
     | 
| 80 | 
         
            +
                    self.instantiate_cond_stage(cond_stage_config)
         
     | 
| 81 | 
         
            +
                    self.cond_stage_forward = cond_stage_forward
         
     | 
| 82 | 
         
            +
                    self.clip_denoised = False
         
     | 
| 83 | 
         
            +
                    self.bbox_tokenizer = None  
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    self.restarted_from_ckpt = False
         
     | 
| 86 | 
         
            +
                    if ckpt_path is not None:
         
     | 
| 87 | 
         
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys)
         
     | 
| 88 | 
         
            +
                        self.restarted_from_ckpt = True
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                def make_cond_schedule(self, ):
         
     | 
| 91 | 
         
            +
                    self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
         
     | 
| 92 | 
         
            +
                    ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
         
     | 
| 93 | 
         
            +
                    self.cond_ids[:self.num_timesteps_cond] = ids
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                @rank_zero_only
         
     | 
| 96 | 
         
            +
                @torch.no_grad()
         
     | 
| 97 | 
         
            +
                def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
         
     | 
| 98 | 
         
            +
                    # only for very first batch
         
     | 
| 99 | 
         
            +
                    if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
         
     | 
| 100 | 
         
            +
                        assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
         
     | 
| 101 | 
         
            +
                        # set rescale weight to 1./std of encodings
         
     | 
| 102 | 
         
            +
                        print("### USING STD-RESCALING ###")
         
     | 
| 103 | 
         
            +
                        x = super().get_input(batch, self.first_stage_key)
         
     | 
| 104 | 
         
            +
                        x = x.to(self.device)
         
     | 
| 105 | 
         
            +
                        encoder_posterior = self.encode_first_stage(x)
         
     | 
| 106 | 
         
            +
                        z = self.get_first_stage_encoding(encoder_posterior).detach()
         
     | 
| 107 | 
         
            +
                        del self.scale_factor
         
     | 
| 108 | 
         
            +
                        self.register_buffer('scale_factor', 1. / z.flatten().std())
         
     | 
| 109 | 
         
            +
                        print(f"setting self.scale_factor to {self.scale_factor}")
         
     | 
| 110 | 
         
            +
                        print("### USING STD-RESCALING ###")
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                def register_schedule(self,
         
     | 
| 113 | 
         
            +
                                      given_betas=None, beta_schedule="linear", timesteps=1000,
         
     | 
| 114 | 
         
            +
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 115 | 
         
            +
                    super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                    self.shorten_cond_schedule = self.num_timesteps_cond > 1
         
     | 
| 118 | 
         
            +
                    if self.shorten_cond_schedule:
         
     | 
| 119 | 
         
            +
                        self.make_cond_schedule()
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                def instantiate_first_stage(self, config):
         
     | 
| 122 | 
         
            +
                    model = instantiate_from_config(config)
         
     | 
| 123 | 
         
            +
                    self.first_stage_model = model.eval()
         
     | 
| 124 | 
         
            +
                    self.first_stage_model.train = disabled_train
         
     | 
| 125 | 
         
            +
                    for param in self.first_stage_model.parameters():
         
     | 
| 126 | 
         
            +
                        param.requires_grad = False
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                def instantiate_cond_stage(self, config):
         
     | 
| 129 | 
         
            +
                    if not self.cond_stage_trainable:
         
     | 
| 130 | 
         
            +
                        if config == "__is_first_stage__":# for no_text inpainting task
         
     | 
| 131 | 
         
            +
                            print("Using first stage also as cond stage.")
         
     | 
| 132 | 
         
            +
                            self.cond_stage_model = self.first_stage_model
         
     | 
| 133 | 
         
            +
                        elif config == "__is_unconditional__":# for unconditional image generation such as human face、ImageNet
         
     | 
| 134 | 
         
            +
                            print(f"Training {self.__class__.__name__} as an unconditional model.")
         
     | 
| 135 | 
         
            +
                            self.cond_stage_model = None
         
     | 
| 136 | 
         
            +
                            # self.be_unconditional = True
         
     | 
| 137 | 
         
            +
                        else:
         
     | 
| 138 | 
         
            +
                            model = instantiate_from_config(config)
         
     | 
| 139 | 
         
            +
                            self.cond_stage_model = model.eval()
         
     | 
| 140 | 
         
            +
                            self.cond_stage_model.train = disabled_train
         
     | 
| 141 | 
         
            +
                            for param in self.cond_stage_model.parameters():
         
     | 
| 142 | 
         
            +
                                param.requires_grad = False
         
     | 
| 143 | 
         
            +
                    else:
         
     | 
| 144 | 
         
            +
                        assert config != '__is_first_stage__'
         
     | 
| 145 | 
         
            +
                        assert config != '__is_unconditional__'
         
     | 
| 146 | 
         
            +
                        model = instantiate_from_config(config)
         
     | 
| 147 | 
         
            +
                        self.cond_stage_model = model
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
         
     | 
| 150 | 
         
            +
                    denoise_row = []
         
     | 
| 151 | 
         
            +
                    for zd in tqdm(samples, desc=desc):
         
     | 
| 152 | 
         
            +
                        denoise_row.append(self.decode_first_stage(zd.to(self.device),
         
     | 
| 153 | 
         
            +
                                                                        force_not_quantize=force_no_decoder_quantization))
         
     | 
| 154 | 
         
            +
                    n_imgs_per_row = len(denoise_row)
         
     | 
| 155 | 
         
            +
                    denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
         
     | 
| 156 | 
         
            +
                    denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
         
     | 
| 157 | 
         
            +
                    denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 158 | 
         
            +
                    denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
         
     | 
| 159 | 
         
            +
                    return denoise_grid
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                def get_first_stage_encoding(self, encoder_posterior):# encode_emb from autoencoder
         
     | 
| 162 | 
         
            +
                    if isinstance(encoder_posterior, DiagonalGaussianDistribution):
         
     | 
| 163 | 
         
            +
                        z = encoder_posterior.sample()
         
     | 
| 164 | 
         
            +
                    elif isinstance(encoder_posterior, torch.Tensor):
         
     | 
| 165 | 
         
            +
                        z = encoder_posterior
         
     | 
| 166 | 
         
            +
                    else:
         
     | 
| 167 | 
         
            +
                        raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
         
     | 
| 168 | 
         
            +
                    return self.scale_factor * z
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                def get_learned_conditioning(self, c):
         
     | 
| 171 | 
         
            +
                    if self.cond_stage_forward is None:
         
     | 
| 172 | 
         
            +
                        if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
         
     | 
| 173 | 
         
            +
                            c = self.cond_stage_model.encode(c)
         
     | 
| 174 | 
         
            +
                            if isinstance(c, DiagonalGaussianDistribution):
         
     | 
| 175 | 
         
            +
                                c = c.mode()
         
     | 
| 176 | 
         
            +
                        else:
         
     | 
| 177 | 
         
            +
                            c = self.cond_stage_model(c)
         
     | 
| 178 | 
         
            +
                    else:
         
     | 
| 179 | 
         
            +
                        assert hasattr(self.cond_stage_model, self.cond_stage_forward)
         
     | 
| 180 | 
         
            +
                        c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
         
     | 
| 181 | 
         
            +
                    return c
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                def meshgrid(self, h, w):
         
     | 
| 184 | 
         
            +
                    y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
         
     | 
| 185 | 
         
            +
                    x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                    arr = torch.cat([y, x], dim=-1)
         
     | 
| 188 | 
         
            +
                    return arr
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                def delta_border(self, h, w):
         
     | 
| 191 | 
         
            +
                    """
         
     | 
| 192 | 
         
            +
                    :param h: height
         
     | 
| 193 | 
         
            +
                    :param w: width
         
     | 
| 194 | 
         
            +
                    :return: normalized distance to image border,
         
     | 
| 195 | 
         
            +
                     wtith min distance = 0 at border and max dist = 0.5 at image center
         
     | 
| 196 | 
         
            +
                    """
         
     | 
| 197 | 
         
            +
                    lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
         
     | 
| 198 | 
         
            +
                    arr = self.meshgrid(h, w) / lower_right_corner
         
     | 
| 199 | 
         
            +
                    dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
         
     | 
| 200 | 
         
            +
                    dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
         
     | 
| 201 | 
         
            +
                    edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
         
     | 
| 202 | 
         
            +
                    return edge_dist
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                def get_weighting(self, h, w, Ly, Lx, device):
         
     | 
| 205 | 
         
            +
                    weighting = self.delta_border(h, w)
         
     | 
| 206 | 
         
            +
                    weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
         
     | 
| 207 | 
         
            +
                                           self.split_input_params["clip_max_weight"], )
         
     | 
| 208 | 
         
            +
                    weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                    if self.split_input_params["tie_braker"]:
         
     | 
| 211 | 
         
            +
                        L_weighting = self.delta_border(Ly, Lx)
         
     | 
| 212 | 
         
            +
                        L_weighting = torch.clip(L_weighting,
         
     | 
| 213 | 
         
            +
                                                 self.split_input_params["clip_min_tie_weight"],
         
     | 
| 214 | 
         
            +
                                                 self.split_input_params["clip_max_tie_weight"])
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                        L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
         
     | 
| 217 | 
         
            +
                        weighting = weighting * L_weighting
         
     | 
| 218 | 
         
            +
                    return weighting
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1):  # todo load once not every time, shorten code
         
     | 
| 221 | 
         
            +
                    """
         
     | 
| 222 | 
         
            +
                    :param x: img of size (bs, c, h, w)
         
     | 
| 223 | 
         
            +
                    :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
         
     | 
| 224 | 
         
            +
                    """
         
     | 
| 225 | 
         
            +
                    bs, nc, h, w = x.shape
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                    # number of crops in image
         
     | 
| 228 | 
         
            +
                    Ly = (h - kernel_size[0]) // stride[0] + 1
         
     | 
| 229 | 
         
            +
                    Lx = (w - kernel_size[1]) // stride[1] + 1
         
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
                    if uf == 1 and df == 1:
         
     | 
| 232 | 
         
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 233 | 
         
            +
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                        fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                        weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
         
     | 
| 238 | 
         
            +
                        normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
         
     | 
| 239 | 
         
            +
                        weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
                    elif uf > 1 and df == 1:
         
     | 
| 242 | 
         
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 243 | 
         
            +
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                        fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
         
     | 
| 246 | 
         
            +
                                            dilation=1, padding=0,
         
     | 
| 247 | 
         
            +
                                            stride=(stride[0] * uf, stride[1] * uf))
         
     | 
| 248 | 
         
            +
                        fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                        weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
         
     | 
| 251 | 
         
            +
                        normalization = fold(weighting).view(1, 1, h * uf, w * uf)  # normalizes the overlap
         
     | 
| 252 | 
         
            +
                        weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                    elif df > 1 and uf == 1:
         
     | 
| 255 | 
         
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 256 | 
         
            +
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                        fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
         
     | 
| 259 | 
         
            +
                                            dilation=1, padding=0,
         
     | 
| 260 | 
         
            +
                                            stride=(stride[0] // df, stride[1] // df))
         
     | 
| 261 | 
         
            +
                        fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                        weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
         
     | 
| 264 | 
         
            +
                        normalization = fold(weighting).view(1, 1, h // df, w // df)  # normalizes the overlap
         
     | 
| 265 | 
         
            +
                        weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                    else:
         
     | 
| 268 | 
         
            +
                        raise NotImplementedError
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                    return fold, unfold, normalization, weighting
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                @torch.no_grad()
         
     | 
| 273 | 
         
            +
                def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
         
     | 
| 274 | 
         
            +
                              cond_key=None, return_original_cond=False, bs=None):
         
     | 
| 275 | 
         
            +
                    x = super().get_input(batch, k)
         
     | 
| 276 | 
         
            +
                    if bs is not None:
         
     | 
| 277 | 
         
            +
                        x = x[:bs]
         
     | 
| 278 | 
         
            +
                    x = x.to(self.device)
         
     | 
| 279 | 
         
            +
                    encoder_posterior = self.encode_first_stage(x)
         
     | 
| 280 | 
         
            +
                    z = self.get_first_stage_encoding(encoder_posterior).detach()
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                    if self.model.conditioning_key is not None:# 'crossattn' for txt2image, 'hybird' for txt_inpaint
         
     | 
| 283 | 
         
            +
                        if cond_key is None:
         
     | 
| 284 | 
         
            +
                            cond_key = self.cond_stage_key # 'caption' for txt_inpaint
         
     | 
| 285 | 
         
            +
                        if self.model.conditioning_key == 'hybrid':
         
     | 
| 286 | 
         
            +
                            xc = {}
         
     | 
| 287 | 
         
            +
                            assert cond_key == 'caption' # only txt_inpaint is implemented now
         
     | 
| 288 | 
         
            +
                            assert 'masked_image' in batch.keys() 
         
     | 
| 289 | 
         
            +
                            assert 'mask' in batch.keys()
         
     | 
| 290 | 
         
            +
                            masked_image = super().get_input(batch,'masked_image')
         
     | 
| 291 | 
         
            +
                            mask = super().get_input(batch,'mask')
         
     | 
| 292 | 
         
            +
                            if bs is not None:
         
     | 
| 293 | 
         
            +
                                masked_image,mask = masked_image[:bs],mask[:bs]
         
     | 
| 294 | 
         
            +
                            masked_image,mask = masked_image.to(self.device),mask.to(self.device)
         
     | 
| 295 | 
         
            +
                            masked_image = self.get_first_stage_encoding(self.encode_first_stage(masked_image)).detach()
         
     | 
| 296 | 
         
            +
                            resized_mask = torch.nn.functional.interpolate(mask,size=masked_image.shape[-2:])
         
     | 
| 297 | 
         
            +
                            xc['c_concat'] = torch.cat((masked_image,resized_mask),dim = 1)
         
     | 
| 298 | 
         
            +
                            xc[cond_key] = batch[cond_key]
         
     | 
| 299 | 
         
            +
                        else:
         
     | 
| 300 | 
         
            +
                            if cond_key != self.first_stage_key:
         
     | 
| 301 | 
         
            +
                                if cond_key in ['caption', 'coordinates_bbox']:
         
     | 
| 302 | 
         
            +
                                    xc = batch[cond_key]
         
     | 
| 303 | 
         
            +
                                elif cond_key == 'class_label':
         
     | 
| 304 | 
         
            +
                                    xc = batch
         
     | 
| 305 | 
         
            +
                                else:
         
     | 
| 306 | 
         
            +
                                    xc = super().get_input(batch, cond_key).to(self.device)
         
     | 
| 307 | 
         
            +
                            else:# cond_key == 'image'
         
     | 
| 308 | 
         
            +
                                xc = x
         
     | 
| 309 | 
         
            +
                        if not self.cond_stage_trainable or force_c_encode:# cond_stage_trainable is true for txt2img,force_c_encoder = True,when called in log_images
         
     | 
| 310 | 
         
            +
                            if isinstance(xc, list):
         
     | 
| 311 | 
         
            +
                                # import pudb; pudb.set_trace()
         
     | 
| 312 | 
         
            +
                                c = self.get_learned_conditioning(xc)# 因为log_images内接下来要调用sample_log,所以需要预先得到处理好的c
         
     | 
| 313 | 
         
            +
                            if isinstance(xc, dict):
         
     | 
| 314 | 
         
            +
                                c = {}
         
     | 
| 315 | 
         
            +
                                c['c_concat'] = xc['c_concat']
         
     | 
| 316 | 
         
            +
                                c['c_crossattn'] = self.get_learned_conditioning(xc[cond_key])
         
     | 
| 317 | 
         
            +
                            else:
         
     | 
| 318 | 
         
            +
                                c = self.get_learned_conditioning(xc.to(self.device))
         
     | 
| 319 | 
         
            +
                        else:
         
     | 
| 320 | 
         
            +
                            c = xc
         
     | 
| 321 | 
         
            +
                        if bs is not None:
         
     | 
| 322 | 
         
            +
                            if isinstance(c,dict):
         
     | 
| 323 | 
         
            +
                                for k in c.keys():
         
     | 
| 324 | 
         
            +
                                    c[k] = c[k][:bs]
         
     | 
| 325 | 
         
            +
                            else:
         
     | 
| 326 | 
         
            +
                                c = c[:bs]
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                        if self.use_positional_encodings:
         
     | 
| 329 | 
         
            +
                            pos_x, pos_y = self.compute_latent_shifts(batch)
         
     | 
| 330 | 
         
            +
                            ckey = __conditioning_keys__[self.model.conditioning_key]
         
     | 
| 331 | 
         
            +
                            c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                    else:
         
     | 
| 334 | 
         
            +
                        c = None
         
     | 
| 335 | 
         
            +
                        xc = None
         
     | 
| 336 | 
         
            +
                        if self.use_positional_encodings:
         
     | 
| 337 | 
         
            +
                            pos_x, pos_y = self.compute_latent_shifts(batch)
         
     | 
| 338 | 
         
            +
                            c = {'pos_x': pos_x, 'pos_y': pos_y}
         
     | 
| 339 | 
         
            +
                    out = [z, c]
         
     | 
| 340 | 
         
            +
                    if return_first_stage_outputs:
         
     | 
| 341 | 
         
            +
                        xrec = self.decode_first_stage(z)
         
     | 
| 342 | 
         
            +
                        out.extend([x, xrec])
         
     | 
| 343 | 
         
            +
                    if return_original_cond:
         
     | 
| 344 | 
         
            +
                        out.append(xc)
         
     | 
| 345 | 
         
            +
                    return out
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                @torch.no_grad()
         
     | 
| 348 | 
         
            +
                def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
         
     | 
| 349 | 
         
            +
                    if predict_cids:
         
     | 
| 350 | 
         
            +
                        if z.dim() == 4:
         
     | 
| 351 | 
         
            +
                            z = torch.argmax(z.exp(), dim=1).long()
         
     | 
| 352 | 
         
            +
                        z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
         
     | 
| 353 | 
         
            +
                        z = rearrange(z, 'b h w c -> b c h w').contiguous()
         
     | 
| 354 | 
         
            +
             
     | 
| 355 | 
         
            +
                    z = 1. / self.scale_factor * z
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 358 | 
         
            +
                        if self.split_input_params["patch_distributed_vq"]:
         
     | 
| 359 | 
         
            +
                            ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 360 | 
         
            +
                            stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 361 | 
         
            +
                            uf = self.split_input_params["vqf"]
         
     | 
| 362 | 
         
            +
                            bs, nc, h, w = z.shape
         
     | 
| 363 | 
         
            +
                            if ks[0] > h or ks[1] > w:
         
     | 
| 364 | 
         
            +
                                ks = (min(ks[0], h), min(ks[1], w))
         
     | 
| 365 | 
         
            +
                                print("reducing Kernel")
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                            if stride[0] > h or stride[1] > w:
         
     | 
| 368 | 
         
            +
                                stride = (min(stride[0], h), min(stride[1], w))
         
     | 
| 369 | 
         
            +
                                print("reducing stride")
         
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
                            fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
                            z = unfold(z)  # (bn, nc * prod(**ks), L)
         
     | 
| 374 | 
         
            +
                            # 1. Reshape to img shape
         
     | 
| 375 | 
         
            +
                            z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 376 | 
         
            +
             
     | 
| 377 | 
         
            +
                            # 2. apply model loop over last dim
         
     | 
| 378 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 379 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
         
     | 
| 380 | 
         
            +
                                                                             force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 381 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 382 | 
         
            +
                            else:
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
         
     | 
| 385 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
                            o = torch.stack(output_list, axis=-1)  # # (bn, nc, ks[0], ks[1], L)
         
     | 
| 388 | 
         
            +
                            o = o * weighting
         
     | 
| 389 | 
         
            +
                            # Reverse 1. reshape to img shape
         
     | 
| 390 | 
         
            +
                            o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 391 | 
         
            +
                            # stitch crops together
         
     | 
| 392 | 
         
            +
                            decoded = fold(o)
         
     | 
| 393 | 
         
            +
                            decoded = decoded / normalization  # norm is shape (1, 1, h, w)
         
     | 
| 394 | 
         
            +
                            return decoded
         
     | 
| 395 | 
         
            +
                        else:
         
     | 
| 396 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 397 | 
         
            +
                                return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 398 | 
         
            +
                            else:
         
     | 
| 399 | 
         
            +
                                return self.first_stage_model.decode(z)
         
     | 
| 400 | 
         
            +
             
     | 
| 401 | 
         
            +
                    else:
         
     | 
| 402 | 
         
            +
                        if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 403 | 
         
            +
                            return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 404 | 
         
            +
                        else:
         
     | 
| 405 | 
         
            +
                            return self.first_stage_model.decode(z)
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
                # same as above but without decorator
         
     | 
| 408 | 
         
            +
                def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
         
     | 
| 409 | 
         
            +
                    if predict_cids:
         
     | 
| 410 | 
         
            +
                        if z.dim() == 4:
         
     | 
| 411 | 
         
            +
                            z = torch.argmax(z.exp(), dim=1).long()
         
     | 
| 412 | 
         
            +
                        z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
         
     | 
| 413 | 
         
            +
                        z = rearrange(z, 'b h w c -> b c h w').contiguous()
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
                    z = 1. / self.scale_factor * z
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 418 | 
         
            +
                        if self.split_input_params["patch_distributed_vq"]:
         
     | 
| 419 | 
         
            +
                            ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 420 | 
         
            +
                            stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 421 | 
         
            +
                            uf = self.split_input_params["vqf"]
         
     | 
| 422 | 
         
            +
                            bs, nc, h, w = z.shape
         
     | 
| 423 | 
         
            +
                            if ks[0] > h or ks[1] > w:
         
     | 
| 424 | 
         
            +
                                ks = (min(ks[0], h), min(ks[1], w))
         
     | 
| 425 | 
         
            +
                                print("reducing Kernel")
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
                            if stride[0] > h or stride[1] > w:
         
     | 
| 428 | 
         
            +
                                stride = (min(stride[0], h), min(stride[1], w))
         
     | 
| 429 | 
         
            +
                                print("reducing stride")
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                            fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
         
     | 
| 432 | 
         
            +
             
     | 
| 433 | 
         
            +
                            z = unfold(z)  # (bn, nc * prod(**ks), L)
         
     | 
| 434 | 
         
            +
                            # 1. Reshape to img shape
         
     | 
| 435 | 
         
            +
                            z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 436 | 
         
            +
             
     | 
| 437 | 
         
            +
                            # 2. apply model loop over last dim
         
     | 
| 438 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):  
         
     | 
| 439 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
         
     | 
| 440 | 
         
            +
                                                                             force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 441 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 442 | 
         
            +
                            else:
         
     | 
| 443 | 
         
            +
             
     | 
| 444 | 
         
            +
                                output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
         
     | 
| 445 | 
         
            +
                                               for i in range(z.shape[-1])]
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
                            o = torch.stack(output_list, axis=-1)  # # (bn, nc, ks[0], ks[1], L)
         
     | 
| 448 | 
         
            +
                            o = o * weighting
         
     | 
| 449 | 
         
            +
                            # Reverse 1. reshape to img shape
         
     | 
| 450 | 
         
            +
                            o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 451 | 
         
            +
                            # stitch crops together
         
     | 
| 452 | 
         
            +
                            decoded = fold(o)
         
     | 
| 453 | 
         
            +
                            decoded = decoded / normalization  # norm is shape (1, 1, h, w)
         
     | 
| 454 | 
         
            +
                            return decoded
         
     | 
| 455 | 
         
            +
                        else:
         
     | 
| 456 | 
         
            +
                            if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 457 | 
         
            +
                                return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 458 | 
         
            +
                            else:
         
     | 
| 459 | 
         
            +
                                return self.first_stage_model.decode(z)
         
     | 
| 460 | 
         
            +
             
     | 
| 461 | 
         
            +
                    else:
         
     | 
| 462 | 
         
            +
                        if isinstance(self.first_stage_model, VQModelInterface):
         
     | 
| 463 | 
         
            +
                            return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
         
     | 
| 464 | 
         
            +
                        else:
         
     | 
| 465 | 
         
            +
                            return self.first_stage_model.decode(z)
         
     | 
| 466 | 
         
            +
             
     | 
| 467 | 
         
            +
                @torch.no_grad()
         
     | 
| 468 | 
         
            +
                def encode_first_stage(self, x):
         
     | 
| 469 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 470 | 
         
            +
                        if self.split_input_params["patch_distributed_vq"]:
         
     | 
| 471 | 
         
            +
                            ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 472 | 
         
            +
                            stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 473 | 
         
            +
                            df = self.split_input_params["vqf"]
         
     | 
| 474 | 
         
            +
                            self.split_input_params['original_image_size'] = x.shape[-2:]
         
     | 
| 475 | 
         
            +
                            bs, nc, h, w = x.shape
         
     | 
| 476 | 
         
            +
                            if ks[0] > h or ks[1] > w:
         
     | 
| 477 | 
         
            +
                                ks = (min(ks[0], h), min(ks[1], w))
         
     | 
| 478 | 
         
            +
                                print("reducing Kernel")
         
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
                            if stride[0] > h or stride[1] > w:
         
     | 
| 481 | 
         
            +
                                stride = (min(stride[0], h), min(stride[1], w))
         
     | 
| 482 | 
         
            +
                                print("reducing stride")
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
                            fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
         
     | 
| 485 | 
         
            +
                            z = unfold(x)  # (bn, nc * prod(**ks), L)
         
     | 
| 486 | 
         
            +
                            # Reshape to img shape
         
     | 
| 487 | 
         
            +
                            z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 488 | 
         
            +
             
     | 
| 489 | 
         
            +
                            output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
         
     | 
| 490 | 
         
            +
                                           for i in range(z.shape[-1])]
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
                            o = torch.stack(output_list, axis=-1)
         
     | 
| 493 | 
         
            +
                            o = o * weighting
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                            # Reverse reshape to img shape
         
     | 
| 496 | 
         
            +
                            o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 497 | 
         
            +
                            # stitch crops together
         
     | 
| 498 | 
         
            +
                            decoded = fold(o)
         
     | 
| 499 | 
         
            +
                            decoded = decoded / normalization
         
     | 
| 500 | 
         
            +
                            return decoded
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                        else:
         
     | 
| 503 | 
         
            +
                            return self.first_stage_model.encode(x)
         
     | 
| 504 | 
         
            +
                    else:
         
     | 
| 505 | 
         
            +
                        return self.first_stage_model.encode(x)
         
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
                def shared_step(self, batch, **kwargs):
         
     | 
| 508 | 
         
            +
                    x, c = self.get_input(batch, self.first_stage_key)# get latent and condition
         
     | 
| 509 | 
         
            +
                    loss = self(x, c)
         
     | 
| 510 | 
         
            +
                    return loss
         
     | 
| 511 | 
         
            +
             
     | 
| 512 | 
         
            +
                def test_step(self,batch,batch_idx):
         
     | 
| 513 | 
         
            +
                    # TODO make self.test_repeat work
         
     | 
| 514 | 
         
            +
                    cond = {}
         
     | 
| 515 | 
         
            +
                    cond[self.cond_stage_key] = batch[self.cond_stage_key]
         
     | 
| 516 | 
         
            +
                    cond[self.cond_stage_key] = self.get_learned_conditioning(cond[self.cond_stage_key]) # c: string -> [B, T, Context_dim]
         
     | 
| 517 | 
         
            +
                    cond['c_crossattn'] = cond.pop(self.cond_stage_key)
         
     | 
| 518 | 
         
            +
                    masked_image = super().get_input(batch,'masked_image')
         
     | 
| 519 | 
         
            +
                    mask = super().get_input(batch,'mask')
         
     | 
| 520 | 
         
            +
                    masked_image,mask = masked_image.to(self.device),mask.to(self.device)
         
     | 
| 521 | 
         
            +
                    masked_image = self.get_first_stage_encoding(self.encode_first_stage(masked_image)).detach()
         
     | 
| 522 | 
         
            +
                    resized_mask = torch.nn.functional.interpolate(mask,size=masked_image.shape[-2:])
         
     | 
| 523 | 
         
            +
                    cond['c_concat'] = torch.cat((masked_image,resized_mask),dim = 1)
         
     | 
| 524 | 
         
            +
                    batch_size = len(batch[self.cond_stage_key])
         
     | 
| 525 | 
         
            +
                    # shape = [batch_size,self.channels,self.mel_dim,self.mel_length]
         
     | 
| 526 | 
         
            +
                    enc_emb = self.sample(cond,batch_size,timesteps=self.test_numsteps)
         
     | 
| 527 | 
         
            +
                    xrec = self.decode_first_stage(enc_emb)
         
     | 
| 528 | 
         
            +
                    reconstructions = (xrec + 1)/2 # to mel scale
         
     | 
| 529 | 
         
            +
                    test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
         
     | 
| 530 | 
         
            +
                    savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
         
     | 
| 531 | 
         
            +
                    if not os.path.exists(savedir):
         
     | 
| 532 | 
         
            +
                        os.makedirs(savedir)
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                    file_names = batch['f_name']
         
     | 
| 535 | 
         
            +
                    nfiles = len(file_names)
         
     | 
| 536 | 
         
            +
                    reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
         
     | 
| 537 | 
         
            +
                    for k in range(reconstructions.shape[0]):
         
     | 
| 538 | 
         
            +
                        b,repeat = k % nfiles, k // nfiles
         
     | 
| 539 | 
         
            +
                        vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
         
     | 
| 540 | 
         
            +
                        v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
         
     | 
| 541 | 
         
            +
                        save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition
         
     | 
| 542 | 
         
            +
                        np.save(save_img_path,reconstructions[b])
         
     | 
| 543 | 
         
            +
                    
         
     | 
| 544 | 
         
            +
                    return None
         
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
                def forward(self, x, c, *args, **kwargs):
         
     | 
| 547 | 
         
            +
                    t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
         
     | 
| 548 | 
         
            +
                    if self.model.conditioning_key is not None:
         
     | 
| 549 | 
         
            +
                        assert c is not None
         
     | 
| 550 | 
         
            +
                        if self.cond_stage_trainable:
         
     | 
| 551 | 
         
            +
                            if isinstance(c,dict):
         
     | 
| 552 | 
         
            +
                                c[self.cond_stage_key] = self.get_learned_conditioning(c[self.cond_stage_key])
         
     | 
| 553 | 
         
            +
                                c['c_crossattn'] = c.pop(self.cond_stage_key)
         
     | 
| 554 | 
         
            +
                            else:
         
     | 
| 555 | 
         
            +
                                c = self.get_learned_conditioning(c) # c: string -> [B, T, Context_dim]
         
     | 
| 556 | 
         
            +
                        if self.shorten_cond_schedule:  # TODO: drop this option
         
     | 
| 557 | 
         
            +
                            tc = self.cond_ids[t].to(self.device)
         
     | 
| 558 | 
         
            +
                            c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
         
     | 
| 559 | 
         
            +
                    return self.p_losses(x, c, t, *args, **kwargs)
         
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
                def _rescale_annotations(self, bboxes, crop_coordinates):  # TODO: move to dataset
         
     | 
| 562 | 
         
            +
                    def rescale_bbox(bbox):
         
     | 
| 563 | 
         
            +
                        x0 = torch.clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
         
     | 
| 564 | 
         
            +
                        y0 = torch.clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
         
     | 
| 565 | 
         
            +
                        w = min(bbox[2] / crop_coordinates[2], 1 - x0)
         
     | 
| 566 | 
         
            +
                        h = min(bbox[3] / crop_coordinates[3], 1 - y0)
         
     | 
| 567 | 
         
            +
                        return x0, y0, w, h
         
     | 
| 568 | 
         
            +
             
     | 
| 569 | 
         
            +
                    return [rescale_bbox(b) for b in bboxes]
         
     | 
| 570 | 
         
            +
             
     | 
| 571 | 
         
            +
                def apply_model(self, x_noisy, t, cond, return_ids=False):
         
     | 
| 572 | 
         
            +
                    # make values to list to enable concat operation in 
         
     | 
| 573 | 
         
            +
                    if isinstance(cond, dict):
         
     | 
| 574 | 
         
            +
                        # hybrid case, cond is exptected to be a dict. (txt2inpaint)
         
     | 
| 575 | 
         
            +
                        cond_tmp = {}# use cond_tmp to avoid inplace edit
         
     | 
| 576 | 
         
            +
                        for k,v in cond.items():
         
     | 
| 577 | 
         
            +
                            if not isinstance(v, list):
         
     | 
| 578 | 
         
            +
                                cond_tmp[k] = [cond[k]]
         
     | 
| 579 | 
         
            +
                            else:
         
     | 
| 580 | 
         
            +
                                cond_tmp[k] = cond[k]
         
     | 
| 581 | 
         
            +
                        cond = cond_tmp
         
     | 
| 582 | 
         
            +
                    else:
         
     | 
| 583 | 
         
            +
                        if not isinstance(cond, list):
         
     | 
| 584 | 
         
            +
                            cond = [cond]
         
     | 
| 585 | 
         
            +
                        key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
         
     | 
| 586 | 
         
            +
                        cond = {key: cond}
         
     | 
| 587 | 
         
            +
             
     | 
| 588 | 
         
            +
                    if hasattr(self, "split_input_params"):
         
     | 
| 589 | 
         
            +
                        assert len(cond) == 1  # todo can only deal with one conditioning atm
         
     | 
| 590 | 
         
            +
                        assert not return_ids  
         
     | 
| 591 | 
         
            +
                        ks = self.split_input_params["ks"]  # eg. (128, 128)
         
     | 
| 592 | 
         
            +
                        stride = self.split_input_params["stride"]  # eg. (64, 64)
         
     | 
| 593 | 
         
            +
             
     | 
| 594 | 
         
            +
                        h, w = x_noisy.shape[-2:]
         
     | 
| 595 | 
         
            +
             
     | 
| 596 | 
         
            +
                        fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
         
     | 
| 597 | 
         
            +
             
     | 
| 598 | 
         
            +
                        z = unfold(x_noisy)  # (bn, nc * prod(**ks), L)
         
     | 
| 599 | 
         
            +
                        # Reshape to img shape
         
     | 
| 600 | 
         
            +
                        z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 601 | 
         
            +
                        z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
         
     | 
| 602 | 
         
            +
             
     | 
| 603 | 
         
            +
                        if self.cond_stage_key in ["image", "LR_image", "segmentation",
         
     | 
| 604 | 
         
            +
                                                   'bbox_img'] and self.model.conditioning_key:  # todo check for completeness
         
     | 
| 605 | 
         
            +
                            c_key = next(iter(cond.keys()))  # get key
         
     | 
| 606 | 
         
            +
                            c = next(iter(cond.values()))  # get value
         
     | 
| 607 | 
         
            +
                            assert (len(c) == 1)  # todo extend to list with more than one elem
         
     | 
| 608 | 
         
            +
                            c = c[0]  # get element
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                            c = unfold(c)
         
     | 
| 611 | 
         
            +
                            c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                            cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
         
     | 
| 614 | 
         
            +
             
     | 
| 615 | 
         
            +
                        elif self.cond_stage_key == 'coordinates_bbox':
         
     | 
| 616 | 
         
            +
                            assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
         
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
                            # assuming padding of unfold is always 0 and its dilation is always 1
         
     | 
| 619 | 
         
            +
                            n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
         
     | 
| 620 | 
         
            +
                            full_img_h, full_img_w = self.split_input_params['original_image_size']
         
     | 
| 621 | 
         
            +
                            # as we are operating on latents, we need the factor from the original image size to the
         
     | 
| 622 | 
         
            +
                            # spatial latent size to properly rescale the crops for regenerating the bbox annotations
         
     | 
| 623 | 
         
            +
                            num_downs = self.first_stage_model.encoder.num_resolutions - 1
         
     | 
| 624 | 
         
            +
                            rescale_latent = 2 ** (num_downs)
         
     | 
| 625 | 
         
            +
             
     | 
| 626 | 
         
            +
                            # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
         
     | 
| 627 | 
         
            +
                            # need to rescale the tl patch coordinates to be in between (0,1)
         
     | 
| 628 | 
         
            +
                            tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
         
     | 
| 629 | 
         
            +
                                                     rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
         
     | 
| 630 | 
         
            +
                                                    for patch_nr in range(z.shape[-1])]
         
     | 
| 631 | 
         
            +
             
     | 
| 632 | 
         
            +
                            # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
         
     | 
| 633 | 
         
            +
                            patch_limits = [(x_tl, y_tl,
         
     | 
| 634 | 
         
            +
                                             rescale_latent * ks[0] / full_img_w,
         
     | 
| 635 | 
         
            +
                                             rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
         
     | 
| 636 | 
         
            +
                            # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
         
     | 
| 637 | 
         
            +
             
     | 
| 638 | 
         
            +
                            # tokenize crop coordinates for the bounding boxes of the respective patches
         
     | 
| 639 | 
         
            +
                            patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
         
     | 
| 640 | 
         
            +
                                                  for bbox in patch_limits]  # list of length l with tensors of shape (1, 2)
         
     | 
| 641 | 
         
            +
                            print(patch_limits_tknzd[0].shape)
         
     | 
| 642 | 
         
            +
                            # cut tknzd crop position from conditioning
         
     | 
| 643 | 
         
            +
                            assert isinstance(cond, dict), 'cond must be dict to be fed into model'
         
     | 
| 644 | 
         
            +
                            cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
         
     | 
| 645 | 
         
            +
                            print(cut_cond.shape)
         
     | 
| 646 | 
         
            +
             
     | 
| 647 | 
         
            +
                            adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
         
     | 
| 648 | 
         
            +
                            adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
         
     | 
| 649 | 
         
            +
                            print(adapted_cond.shape)
         
     | 
| 650 | 
         
            +
                            adapted_cond = self.get_learned_conditioning(adapted_cond)
         
     | 
| 651 | 
         
            +
                            print(adapted_cond.shape)
         
     | 
| 652 | 
         
            +
                            adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
         
     | 
| 653 | 
         
            +
                            print(adapted_cond.shape)
         
     | 
| 654 | 
         
            +
             
     | 
| 655 | 
         
            +
                            cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
         
     | 
| 656 | 
         
            +
             
     | 
| 657 | 
         
            +
                        else:
         
     | 
| 658 | 
         
            +
                            cond_list = [cond for i in range(z.shape[-1])]  # Todo make this more efficient
         
     | 
| 659 | 
         
            +
             
     | 
| 660 | 
         
            +
                        # apply model by loop over crops
         
     | 
| 661 | 
         
            +
                        output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
         
     | 
| 662 | 
         
            +
                        assert not isinstance(output_list[0],
         
     | 
| 663 | 
         
            +
                                              tuple)  # todo cant deal with multiple model outputs check this never happens
         
     | 
| 664 | 
         
            +
             
     | 
| 665 | 
         
            +
                        o = torch.stack(output_list, axis=-1)
         
     | 
| 666 | 
         
            +
                        o = o * weighting
         
     | 
| 667 | 
         
            +
                        # Reverse reshape to img shape
         
     | 
| 668 | 
         
            +
                        o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
         
     | 
| 669 | 
         
            +
                        # stitch crops together
         
     | 
| 670 | 
         
            +
                        x_recon = fold(o) / normalization
         
     | 
| 671 | 
         
            +
             
     | 
| 672 | 
         
            +
                    else:
         
     | 
| 673 | 
         
            +
                        # x_noisy is tensor with shape [b,c,mel_len,T]
         
     | 
| 674 | 
         
            +
                        # if condition is caption ,cond['c_crossattn'] is a list, each item shape is [1, 77, 1280]
         
     | 
| 675 | 
         
            +
                        x_recon = self.model(x_noisy, t, **cond)# tensor with shape [b,c,mel_len,T]
         
     | 
| 676 | 
         
            +
             
     | 
| 677 | 
         
            +
                    if isinstance(x_recon, tuple) and not return_ids:
         
     | 
| 678 | 
         
            +
                        return x_recon[0]
         
     | 
| 679 | 
         
            +
                    else:
         
     | 
| 680 | 
         
            +
                        return x_recon
         
     | 
| 681 | 
         
            +
             
     | 
| 682 | 
         
            +
                def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
         
     | 
| 683 | 
         
            +
                    return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
         
     | 
| 684 | 
         
            +
                           extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
         
     | 
| 685 | 
         
            +
             
     | 
| 686 | 
         
            +
                def _prior_bpd(self, x_start):
         
     | 
| 687 | 
         
            +
                    """
         
     | 
| 688 | 
         
            +
                    Get the prior KL term for the variational lower-bound, measured in
         
     | 
| 689 | 
         
            +
                    bits-per-dim.
         
     | 
| 690 | 
         
            +
                    This term can't be optimized, as it only depends on the encoder.
         
     | 
| 691 | 
         
            +
                    :param x_start: the [N x C x ...] tensor of inputs.
         
     | 
| 692 | 
         
            +
                    :return: a batch of [N] KL values (in bits), one per batch element.
         
     | 
| 693 | 
         
            +
                    """
         
     | 
| 694 | 
         
            +
                    batch_size = x_start.shape[0]
         
     | 
| 695 | 
         
            +
                    t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
         
     | 
| 696 | 
         
            +
                    qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
         
     | 
| 697 | 
         
            +
                    kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
         
     | 
| 698 | 
         
            +
                    return mean_flat(kl_prior) / np.log(2.0)
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
                def p_losses(self, x_start, cond, t, noise=None):
         
     | 
| 701 | 
         
            +
                    noise = default(noise, lambda: torch.randn_like(x_start))
         
     | 
| 702 | 
         
            +
                    x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         
     | 
| 703 | 
         
            +
                    model_output = self.apply_model(x_noisy, t, cond)
         
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
                    loss_dict = {}
         
     | 
| 706 | 
         
            +
                    prefix = 'train' if self.training else 'val'
         
     | 
| 707 | 
         
            +
             
     | 
| 708 | 
         
            +
                    if self.parameterization == "x0":
         
     | 
| 709 | 
         
            +
                        target = x_start
         
     | 
| 710 | 
         
            +
                    elif self.parameterization == "eps":
         
     | 
| 711 | 
         
            +
                        target = noise
         
     | 
| 712 | 
         
            +
                    else:
         
     | 
| 713 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 714 | 
         
            +
             
     | 
| 715 | 
         
            +
                    loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
         
     | 
| 716 | 
         
            +
                    loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
         
     | 
| 717 | 
         
            +
             
     | 
| 718 | 
         
            +
                    logvar_t = self.logvar[t].to(self.device)
         
     | 
| 719 | 
         
            +
                    loss = loss_simple / torch.exp(logvar_t) + logvar_t
         
     | 
| 720 | 
         
            +
                    # loss = loss_simple / torch.exp(self.logvar) + self.logvar
         
     | 
| 721 | 
         
            +
                    if self.learn_logvar:
         
     | 
| 722 | 
         
            +
                        loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
         
     | 
| 723 | 
         
            +
                        loss_dict.update({'logvar': self.logvar.data.mean()})
         
     | 
| 724 | 
         
            +
             
     | 
| 725 | 
         
            +
                    loss = self.l_simple_weight * loss.mean()
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
                    loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
         
     | 
| 728 | 
         
            +
                    loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
         
     | 
| 729 | 
         
            +
                    loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
         
     | 
| 730 | 
         
            +
                    loss += (self.original_elbo_weight * loss_vlb)
         
     | 
| 731 | 
         
            +
                    loss_dict.update({f'{prefix}/loss': loss})
         
     | 
| 732 | 
         
            +
             
     | 
| 733 | 
         
            +
                    return loss, loss_dict
         
     | 
| 734 | 
         
            +
             
     | 
| 735 | 
         
            +
                def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
         
     | 
| 736 | 
         
            +
                                    return_x0=False, score_corrector=None, corrector_kwargs=None):
         
     | 
| 737 | 
         
            +
                    t_in = t
         
     | 
| 738 | 
         
            +
                    model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
         
     | 
| 739 | 
         
            +
             
     | 
| 740 | 
         
            +
                    if score_corrector is not None:
         
     | 
| 741 | 
         
            +
                        assert self.parameterization == "eps"
         
     | 
| 742 | 
         
            +
                        model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
         
     | 
| 743 | 
         
            +
             
     | 
| 744 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 745 | 
         
            +
                        model_out, logits = model_out
         
     | 
| 746 | 
         
            +
             
     | 
| 747 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 748 | 
         
            +
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         
     | 
| 749 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 750 | 
         
            +
                        x_recon = model_out
         
     | 
| 751 | 
         
            +
                    else:
         
     | 
| 752 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 753 | 
         
            +
             
     | 
| 754 | 
         
            +
                    if clip_denoised:
         
     | 
| 755 | 
         
            +
                        x_recon.clamp_(-1., 1.)
         
     | 
| 756 | 
         
            +
                    if quantize_denoised:
         
     | 
| 757 | 
         
            +
                        x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
         
     | 
| 758 | 
         
            +
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
         
     | 
| 759 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 760 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance, logits
         
     | 
| 761 | 
         
            +
                    elif return_x0:
         
     | 
| 762 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance, x_recon
         
     | 
| 763 | 
         
            +
                    else:
         
     | 
| 764 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance
         
     | 
| 765 | 
         
            +
             
     | 
| 766 | 
         
            +
                @torch.no_grad()
         
     | 
| 767 | 
         
            +
                def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
         
     | 
| 768 | 
         
            +
                             return_codebook_ids=False, quantize_denoised=False, return_x0=False,
         
     | 
| 769 | 
         
            +
                             temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
         
     | 
| 770 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 771 | 
         
            +
                    outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
         
     | 
| 772 | 
         
            +
                                                   return_codebook_ids=return_codebook_ids,
         
     | 
| 773 | 
         
            +
                                                   quantize_denoised=quantize_denoised,
         
     | 
| 774 | 
         
            +
                                                   return_x0=return_x0,
         
     | 
| 775 | 
         
            +
                                                   score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
         
     | 
| 776 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 777 | 
         
            +
                        raise DeprecationWarning("Support dropped.")
         
     | 
| 778 | 
         
            +
                        model_mean, _, model_log_variance, logits = outputs
         
     | 
| 779 | 
         
            +
                    elif return_x0:
         
     | 
| 780 | 
         
            +
                        model_mean, _, model_log_variance, x0 = outputs
         
     | 
| 781 | 
         
            +
                    else:
         
     | 
| 782 | 
         
            +
                        model_mean, _, model_log_variance = outputs
         
     | 
| 783 | 
         
            +
             
     | 
| 784 | 
         
            +
                    noise = noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 785 | 
         
            +
                    if noise_dropout > 0.:
         
     | 
| 786 | 
         
            +
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 787 | 
         
            +
                    # no noise when t == 0
         
     | 
| 788 | 
         
            +
                    nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
         
     | 
| 789 | 
         
            +
             
     | 
| 790 | 
         
            +
                    if return_codebook_ids:
         
     | 
| 791 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
         
     | 
| 792 | 
         
            +
                    if return_x0:
         
     | 
| 793 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
         
     | 
| 794 | 
         
            +
                    else:
         
     | 
| 795 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         
     | 
| 796 | 
         
            +
             
     | 
| 797 | 
         
            +
                @torch.no_grad()
         
     | 
| 798 | 
         
            +
                def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
         
     | 
| 799 | 
         
            +
                                          img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
         
     | 
| 800 | 
         
            +
                                          score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
         
     | 
| 801 | 
         
            +
                                          log_every_t=None):
         
     | 
| 802 | 
         
            +
                    if not log_every_t:
         
     | 
| 803 | 
         
            +
                        log_every_t = self.log_every_t
         
     | 
| 804 | 
         
            +
                    timesteps = self.num_timesteps
         
     | 
| 805 | 
         
            +
                    if batch_size is not None:
         
     | 
| 806 | 
         
            +
                        b = batch_size if batch_size is not None else shape[0]
         
     | 
| 807 | 
         
            +
                        shape = [batch_size] + list(shape)
         
     | 
| 808 | 
         
            +
                    else:
         
     | 
| 809 | 
         
            +
                        b = batch_size = shape[0]
         
     | 
| 810 | 
         
            +
                    if x_T is None:
         
     | 
| 811 | 
         
            +
                        img = torch.randn(shape, device=self.device)
         
     | 
| 812 | 
         
            +
                    else:
         
     | 
| 813 | 
         
            +
                        img = x_T
         
     | 
| 814 | 
         
            +
                    intermediates = []
         
     | 
| 815 | 
         
            +
                    if cond is not None:
         
     | 
| 816 | 
         
            +
                        if isinstance(cond, dict):
         
     | 
| 817 | 
         
            +
                            cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
         
     | 
| 818 | 
         
            +
                            list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
         
     | 
| 819 | 
         
            +
                        else:
         
     | 
| 820 | 
         
            +
                            cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
         
     | 
| 821 | 
         
            +
             
     | 
| 822 | 
         
            +
                    if start_T is not None:
         
     | 
| 823 | 
         
            +
                        timesteps = min(timesteps, start_T)
         
     | 
| 824 | 
         
            +
                    iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
         
     | 
| 825 | 
         
            +
                                    total=timesteps) if verbose else reversed(
         
     | 
| 826 | 
         
            +
                        range(0, timesteps))
         
     | 
| 827 | 
         
            +
                    if type(temperature) == float:
         
     | 
| 828 | 
         
            +
                        temperature = [temperature] * timesteps
         
     | 
| 829 | 
         
            +
             
     | 
| 830 | 
         
            +
                    for i in iterator:
         
     | 
| 831 | 
         
            +
                        ts = torch.full((b,), i, device=self.device, dtype=torch.long)
         
     | 
| 832 | 
         
            +
                        if self.shorten_cond_schedule:
         
     | 
| 833 | 
         
            +
                            assert self.model.conditioning_key != 'hybrid'
         
     | 
| 834 | 
         
            +
                            tc = self.cond_ids[ts].to(cond.device)
         
     | 
| 835 | 
         
            +
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         
     | 
| 836 | 
         
            +
             
     | 
| 837 | 
         
            +
                        img, x0_partial = self.p_sample(img, cond, ts,
         
     | 
| 838 | 
         
            +
                                                        clip_denoised=self.clip_denoised,
         
     | 
| 839 | 
         
            +
                                                        quantize_denoised=quantize_denoised, return_x0=True,
         
     | 
| 840 | 
         
            +
                                                        temperature=temperature[i], noise_dropout=noise_dropout,
         
     | 
| 841 | 
         
            +
                                                        score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
         
     | 
| 842 | 
         
            +
                        if mask is not None:
         
     | 
| 843 | 
         
            +
                            assert x0 is not None
         
     | 
| 844 | 
         
            +
                            img_orig = self.q_sample(x0, ts)
         
     | 
| 845 | 
         
            +
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 846 | 
         
            +
             
     | 
| 847 | 
         
            +
                        if i % log_every_t == 0 or i == timesteps - 1:
         
     | 
| 848 | 
         
            +
                            intermediates.append(x0_partial)
         
     | 
| 849 | 
         
            +
                        if callback: callback(i)
         
     | 
| 850 | 
         
            +
                        if img_callback: img_callback(img, i)
         
     | 
| 851 | 
         
            +
                    return img, intermediates
         
     | 
| 852 | 
         
            +
             
     | 
| 853 | 
         
            +
                @torch.no_grad()
         
     | 
| 854 | 
         
            +
                def p_sample_loop(self, cond, shape, return_intermediates=False,
         
     | 
| 855 | 
         
            +
                                  x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
         
     | 
| 856 | 
         
            +
                                  mask=None, x0=None, img_callback=None, start_T=None,
         
     | 
| 857 | 
         
            +
                                  log_every_t=None):
         
     | 
| 858 | 
         
            +
             
     | 
| 859 | 
         
            +
                    if not log_every_t:
         
     | 
| 860 | 
         
            +
                        log_every_t = self.log_every_t
         
     | 
| 861 | 
         
            +
                    device = self.betas.device
         
     | 
| 862 | 
         
            +
                    b = shape[0]
         
     | 
| 863 | 
         
            +
                    if x_T is None:
         
     | 
| 864 | 
         
            +
                        img = torch.randn(shape, device=device)
         
     | 
| 865 | 
         
            +
                    else:
         
     | 
| 866 | 
         
            +
                        img = x_T
         
     | 
| 867 | 
         
            +
             
     | 
| 868 | 
         
            +
                    intermediates = [img]
         
     | 
| 869 | 
         
            +
                    if timesteps is None:
         
     | 
| 870 | 
         
            +
                        timesteps = self.num_timesteps
         
     | 
| 871 | 
         
            +
             
     | 
| 872 | 
         
            +
                    if start_T is not None:
         
     | 
| 873 | 
         
            +
                        timesteps = min(timesteps, start_T)
         
     | 
| 874 | 
         
            +
                    iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
         
     | 
| 875 | 
         
            +
                        range(0, timesteps))
         
     | 
| 876 | 
         
            +
             
     | 
| 877 | 
         
            +
                    if mask is not None:
         
     | 
| 878 | 
         
            +
                        assert x0 is not None
         
     | 
| 879 | 
         
            +
                        assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
         
     | 
| 880 | 
         
            +
             
     | 
| 881 | 
         
            +
                    for i in iterator:
         
     | 
| 882 | 
         
            +
                        ts = torch.full((b,), i, device=device, dtype=torch.long)
         
     | 
| 883 | 
         
            +
                        if self.shorten_cond_schedule:
         
     | 
| 884 | 
         
            +
                            assert self.model.conditioning_key != 'hybrid'
         
     | 
| 885 | 
         
            +
                            tc = self.cond_ids[ts].to(cond.device)
         
     | 
| 886 | 
         
            +
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         
     | 
| 887 | 
         
            +
             
     | 
| 888 | 
         
            +
                        img = self.p_sample(img, cond, ts,
         
     | 
| 889 | 
         
            +
                                            clip_denoised=self.clip_denoised,
         
     | 
| 890 | 
         
            +
                                            quantize_denoised=quantize_denoised)
         
     | 
| 891 | 
         
            +
                        if mask is not None:
         
     | 
| 892 | 
         
            +
                            img_orig = self.q_sample(x0, ts)
         
     | 
| 893 | 
         
            +
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 894 | 
         
            +
             
     | 
| 895 | 
         
            +
                        if i % log_every_t == 0 or i == timesteps - 1:
         
     | 
| 896 | 
         
            +
                            intermediates.append(img)
         
     | 
| 897 | 
         
            +
                        if callback: callback(i)
         
     | 
| 898 | 
         
            +
                        if img_callback: img_callback(img, i)
         
     | 
| 899 | 
         
            +
             
     | 
| 900 | 
         
            +
                    if return_intermediates:
         
     | 
| 901 | 
         
            +
                        return img, intermediates
         
     | 
| 902 | 
         
            +
                    return img
         
     | 
| 903 | 
         
            +
             
     | 
| 904 | 
         
            +
                @torch.no_grad()
         
     | 
| 905 | 
         
            +
                def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
         
     | 
| 906 | 
         
            +
                           verbose=True, timesteps=None, quantize_denoised=False,
         
     | 
| 907 | 
         
            +
                           mask=None, x0=None, shape=None,**kwargs):
         
     | 
| 908 | 
         
            +
                    if shape is None:
         
     | 
| 909 | 
         
            +
                        shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
         
     | 
| 910 | 
         
            +
                    if cond is not None:
         
     | 
| 911 | 
         
            +
                        if isinstance(cond, dict):
         
     | 
| 912 | 
         
            +
                            cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
         
     | 
| 913 | 
         
            +
                            list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
         
     | 
| 914 | 
         
            +
                        else:
         
     | 
| 915 | 
         
            +
                            cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
         
     | 
| 916 | 
         
            +
                    return self.p_sample_loop(cond,
         
     | 
| 917 | 
         
            +
                                              shape,
         
     | 
| 918 | 
         
            +
                                              return_intermediates=return_intermediates, x_T=x_T,
         
     | 
| 919 | 
         
            +
                                              verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
         
     | 
| 920 | 
         
            +
                                              mask=mask, x0=x0)
         
     | 
| 921 | 
         
            +
             
     | 
| 922 | 
         
            +
                @torch.no_grad()
         
     | 
| 923 | 
         
            +
                def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
         
     | 
| 924 | 
         
            +
                    if ddim:
         
     | 
| 925 | 
         
            +
                        ddim_sampler = DDIMSampler(self)
         
     | 
| 926 | 
         
            +
                        shape = (self.channels, self.mel_dim, self.mel_length)
         
     | 
| 927 | 
         
            +
                        samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
         
     | 
| 928 | 
         
            +
                                                                    shape,cond,verbose=False,**kwargs)
         
     | 
| 929 | 
         
            +
             
     | 
| 930 | 
         
            +
                    else:
         
     | 
| 931 | 
         
            +
                        samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
         
     | 
| 932 | 
         
            +
                                                             return_intermediates=True,**kwargs)
         
     | 
| 933 | 
         
            +
             
     | 
| 934 | 
         
            +
                    return samples, intermediates
         
     | 
| 935 | 
         
            +
             
     | 
| 936 | 
         
            +
                @torch.no_grad()
         
     | 
| 937 | 
         
            +
                def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
         
     | 
| 938 | 
         
            +
                               quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
         
     | 
| 939 | 
         
            +
                               plot_diffusion_rows=True, **kwargs):
         
     | 
| 940 | 
         
            +
             
     | 
| 941 | 
         
            +
                    use_ddim = ddim_steps is not None
         
     | 
| 942 | 
         
            +
             
     | 
| 943 | 
         
            +
                    log = dict()
         
     | 
| 944 | 
         
            +
                    z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
         
     | 
| 945 | 
         
            +
                                                       return_first_stage_outputs=True,
         
     | 
| 946 | 
         
            +
                                                       force_c_encode=True,
         
     | 
| 947 | 
         
            +
                                                       return_original_cond=True,
         
     | 
| 948 | 
         
            +
                                                       bs=N)
         
     | 
| 949 | 
         
            +
             
     | 
| 950 | 
         
            +
                    N = min(x.shape[0], N)
         
     | 
| 951 | 
         
            +
                    n_row = min(x.shape[0], n_row)
         
     | 
| 952 | 
         
            +
                    log["inputs"] = x # 原始输入图像
         
     | 
| 953 | 
         
            +
                    log["reconstruction"] = xrec # 重建得到的图像
         
     | 
| 954 | 
         
            +
                    if self.model.conditioning_key is not None:
         
     | 
| 955 | 
         
            +
                        if hasattr(self.cond_stage_model, "decode"):# when cond_stage is first_stage. (bert embedder doesnot have decode)
         
     | 
| 956 | 
         
            +
                            xc = self.cond_stage_model.decode(c)# decoded masked image
         
     | 
| 957 | 
         
            +
                            log["conditioning"] = xc # 重建后的图像
         
     | 
| 958 | 
         
            +
                        elif self.cond_stage_key in ["caption"]:
         
     | 
| 959 | 
         
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
         
     | 
| 960 | 
         
            +
                            log["conditioning"] = xc # 含有文本的图像 
         
     | 
| 961 | 
         
            +
                            if self.model.conditioning_key == 'hybrid':
         
     | 
| 962 | 
         
            +
                                log["decoded_maskedimg"] = self.first_stage_model.decode(c['c_concat'][:,:self.first_stage_model.embed_dim])# c_concat is the concat result of masked_img latent and resized mask. get latent here to decode
         
     | 
| 963 | 
         
            +
                        elif self.cond_stage_key == 'class_label':
         
     | 
| 964 | 
         
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
         
     | 
| 965 | 
         
            +
                            log['conditioning'] = xc # 文本为类标签的图像
         
     | 
| 966 | 
         
            +
                        elif isimage(xc):
         
     | 
| 967 | 
         
            +
                            log["conditioning"] = xc
         
     | 
| 968 | 
         
            +
                        if ismap(xc):
         
     | 
| 969 | 
         
            +
                            log["original_conditioning"] = self.to_rgb(xc)
         
     | 
| 970 | 
         
            +
             
     | 
| 971 | 
         
            +
                    if plot_diffusion_rows:# diffusion每一步的图像
         
     | 
| 972 | 
         
            +
                        # get diffusion row
         
     | 
| 973 | 
         
            +
                        diffusion_row = list()
         
     | 
| 974 | 
         
            +
                        z_start = z[:n_row]
         
     | 
| 975 | 
         
            +
                        for t in range(self.num_timesteps):
         
     | 
| 976 | 
         
            +
                            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         
     | 
| 977 | 
         
            +
                                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         
     | 
| 978 | 
         
            +
                                t = t.to(self.device).long()
         
     | 
| 979 | 
         
            +
                                noise = torch.randn_like(z_start)
         
     | 
| 980 | 
         
            +
                                z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
         
     | 
| 981 | 
         
            +
                                diffusion_row.append(self.decode_first_stage(z_noisy))
         
     | 
| 982 | 
         
            +
             
     | 
| 983 | 
         
            +
                        diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
         
     | 
| 984 | 
         
            +
                        diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
         
     | 
| 985 | 
         
            +
                        diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 986 | 
         
            +
                        diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
         
     | 
| 987 | 
         
            +
                        log["diffusion_row"] = diffusion_grid
         
     | 
| 988 | 
         
            +
             
     | 
| 989 | 
         
            +
                    if sample:# 
         
     | 
| 990 | 
         
            +
                        # get denoise row
         
     | 
| 991 | 
         
            +
                        with self.ema_scope("Plotting"):
         
     | 
| 992 | 
         
            +
                            samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
         
     | 
| 993 | 
         
            +
                                                                     ddim_steps=ddim_steps,eta=ddim_eta)
         
     | 
| 994 | 
         
            +
                            # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
         
     | 
| 995 | 
         
            +
                        x_samples = self.decode_first_stage(samples)
         
     | 
| 996 | 
         
            +
                        log["samples"] = x_samples
         
     | 
| 997 | 
         
            +
                        if plot_denoise_rows:
         
     | 
| 998 | 
         
            +
                            denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
         
     | 
| 999 | 
         
            +
                            log["denoise_row"] = denoise_grid
         
     | 
| 1000 | 
         
            +
             
     | 
| 1001 | 
         
            +
                        if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
         
     | 
| 1002 | 
         
            +
                                self.first_stage_model, IdentityFirstStage):
         
     | 
| 1003 | 
         
            +
                            # also display when quantizing x0 while sampling
         
     | 
| 1004 | 
         
            +
                            with self.ema_scope("Plotting Quantized Denoised"):
         
     | 
| 1005 | 
         
            +
                                samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
         
     | 
| 1006 | 
         
            +
                                                                         ddim_steps=ddim_steps,eta=ddim_eta,
         
     | 
| 1007 | 
         
            +
                                                                         quantize_denoised=True)
         
     | 
| 1008 | 
         
            +
                                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
         
     | 
| 1009 | 
         
            +
                                #                                      quantize_denoised=True)
         
     | 
| 1010 | 
         
            +
                            x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 1011 | 
         
            +
                            log["samples_x0_quantized"] = x_samples
         
     | 
| 1012 | 
         
            +
             
     | 
| 1013 | 
         
            +
                        if inpaint:
         
     | 
| 1014 | 
         
            +
                            # make a simple center square
         
     | 
| 1015 | 
         
            +
                            b, h, w = z.shape[0], z.shape[2], z.shape[3]
         
     | 
| 1016 | 
         
            +
                            mask = torch.ones(N, h, w).to(self.device)
         
     | 
| 1017 | 
         
            +
                            # zeros will be filled in
         
     | 
| 1018 | 
         
            +
                            mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
         
     | 
| 1019 | 
         
            +
                            mask = mask[:, None, ...]# N,1,H,W
         
     | 
| 1020 | 
         
            +
                            with self.ema_scope("Plotting Inpaint"):
         
     | 
| 1021 | 
         
            +
                                samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
         
     | 
| 1022 | 
         
            +
                                                            ddim_steps=ddim_steps, x0=z[:N], mask=mask)
         
     | 
| 1023 | 
         
            +
                            x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 1024 | 
         
            +
                            log["samples_inpainting"] = x_samples
         
     | 
| 1025 | 
         
            +
                            log["mask"] = mask
         
     | 
| 1026 | 
         
            +
             
     | 
| 1027 | 
         
            +
                            # outpaint
         
     | 
| 1028 | 
         
            +
                            with self.ema_scope("Plotting Outpaint"):
         
     | 
| 1029 | 
         
            +
                                samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
         
     | 
| 1030 | 
         
            +
                                                            ddim_steps=ddim_steps, x0=z[:N], mask=mask)
         
     | 
| 1031 | 
         
            +
                            x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 1032 | 
         
            +
                            log["samples_outpainting"] = x_samples
         
     | 
| 1033 | 
         
            +
             
     | 
| 1034 | 
         
            +
                    if plot_progressive_rows:
         
     | 
| 1035 | 
         
            +
                        with self.ema_scope("Plotting Progressives"):
         
     | 
| 1036 | 
         
            +
                            img, progressives = self.progressive_denoising(c,
         
     | 
| 1037 | 
         
            +
                                                                           shape=(self.channels, self.mel_dim, self.mel_length),
         
     | 
| 1038 | 
         
            +
                                                                           batch_size=N)
         
     | 
| 1039 | 
         
            +
                        prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
         
     | 
| 1040 | 
         
            +
                        log["progressive_row"] = prog_row
         
     | 
| 1041 | 
         
            +
             
     | 
| 1042 | 
         
            +
                    if return_keys:
         
     | 
| 1043 | 
         
            +
                        if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
         
     | 
| 1044 | 
         
            +
                            return log
         
     | 
| 1045 | 
         
            +
                        else:
         
     | 
| 1046 | 
         
            +
                            return {key: log[key] for key in return_keys}
         
     | 
| 1047 | 
         
            +
                    return log
         
     | 
| 1048 | 
         
            +
             
     | 
| 1049 | 
         
            +
                def configure_optimizers(self):
         
     | 
| 1050 | 
         
            +
                    lr = self.learning_rate
         
     | 
| 1051 | 
         
            +
                    params = list(self.model.parameters())
         
     | 
| 1052 | 
         
            +
                    if self.cond_stage_trainable:
         
     | 
| 1053 | 
         
            +
                        print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
         
     | 
| 1054 | 
         
            +
                        params = params + list(self.cond_stage_model.parameters())
         
     | 
| 1055 | 
         
            +
                    if self.learn_logvar:
         
     | 
| 1056 | 
         
            +
                        print('Diffusion model optimizing logvar')
         
     | 
| 1057 | 
         
            +
                        params.append(self.logvar)
         
     | 
| 1058 | 
         
            +
                    opt = torch.optim.AdamW(params, lr=lr)
         
     | 
| 1059 | 
         
            +
                    if self.use_scheduler:
         
     | 
| 1060 | 
         
            +
                        assert 'target' in self.scheduler_config
         
     | 
| 1061 | 
         
            +
                        scheduler = instantiate_from_config(self.scheduler_config)
         
     | 
| 1062 | 
         
            +
             
     | 
| 1063 | 
         
            +
                        print("Setting up LambdaLR scheduler...")
         
     | 
| 1064 | 
         
            +
                        scheduler = [
         
     | 
| 1065 | 
         
            +
                            {
         
     | 
| 1066 | 
         
            +
                                'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
         
     | 
| 1067 | 
         
            +
                                'interval': 'step',
         
     | 
| 1068 | 
         
            +
                                'frequency': 1
         
     | 
| 1069 | 
         
            +
                            }]
         
     | 
| 1070 | 
         
            +
                        return [opt], scheduler
         
     | 
| 1071 | 
         
            +
                    return opt
         
     | 
| 1072 | 
         
            +
             
     | 
| 1073 | 
         
            +
                @torch.no_grad()
         
     | 
| 1074 | 
         
            +
                def to_rgb(self, x):
         
     | 
| 1075 | 
         
            +
                    x = x.float()
         
     | 
| 1076 | 
         
            +
                    if not hasattr(self, "colorize"):
         
     | 
| 1077 | 
         
            +
                        self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
         
     | 
| 1078 | 
         
            +
                    x = nn.functional.conv2d(x, weight=self.colorize)
         
     | 
| 1079 | 
         
            +
                    x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
         
     | 
| 1080 | 
         
            +
                    return x
         
     | 
| 1081 | 
         
            +
             
     | 
    	
        ldm/models/diffusion/plms.py
    ADDED
    
    | 
         @@ -0,0 +1,236 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """SAMPLING ONLY."""
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            from tqdm import tqdm
         
     | 
| 6 | 
         
            +
            from functools import partial
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            class PLMSSampler(object):
         
     | 
| 12 | 
         
            +
                def __init__(self, model, schedule="linear", **kwargs):
         
     | 
| 13 | 
         
            +
                    super().__init__()
         
     | 
| 14 | 
         
            +
                    self.model = model
         
     | 
| 15 | 
         
            +
                    self.ddpm_num_timesteps = model.num_timesteps
         
     | 
| 16 | 
         
            +
                    self.schedule = schedule
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                def register_buffer(self, name, attr):
         
     | 
| 19 | 
         
            +
                    if type(attr) == torch.Tensor:
         
     | 
| 20 | 
         
            +
                        if attr.device != torch.device("cuda"):
         
     | 
| 21 | 
         
            +
                            attr = attr.to(torch.device("cuda"))
         
     | 
| 22 | 
         
            +
                    setattr(self, name, attr)
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
         
     | 
| 25 | 
         
            +
                    if ddim_eta != 0:
         
     | 
| 26 | 
         
            +
                        raise ValueError('ddim_eta must be 0 for PLMS')
         
     | 
| 27 | 
         
            +
                    self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
         
     | 
| 28 | 
         
            +
                                                              num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
         
     | 
| 29 | 
         
            +
                    alphas_cumprod = self.model.alphas_cumprod
         
     | 
| 30 | 
         
            +
                    assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
         
     | 
| 31 | 
         
            +
                    to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                    self.register_buffer('betas', to_torch(self.model.betas))
         
     | 
| 34 | 
         
            +
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         
     | 
| 35 | 
         
            +
                    self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 38 | 
         
            +
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
         
     | 
| 39 | 
         
            +
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
         
     | 
| 40 | 
         
            +
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
         
     | 
| 41 | 
         
            +
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
         
     | 
| 42 | 
         
            +
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                    # ddim sampling parameters
         
     | 
| 45 | 
         
            +
                    ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
         
     | 
| 46 | 
         
            +
                                                                                               ddim_timesteps=self.ddim_timesteps,
         
     | 
| 47 | 
         
            +
                                                                                               eta=ddim_eta,verbose=verbose)
         
     | 
| 48 | 
         
            +
                    self.register_buffer('ddim_sigmas', ddim_sigmas)
         
     | 
| 49 | 
         
            +
                    self.register_buffer('ddim_alphas', ddim_alphas)
         
     | 
| 50 | 
         
            +
                    self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
         
     | 
| 51 | 
         
            +
                    self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
         
     | 
| 52 | 
         
            +
                    sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
         
     | 
| 53 | 
         
            +
                        (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
         
     | 
| 54 | 
         
            +
                                    1 - self.alphas_cumprod / self.alphas_cumprod_prev))
         
     | 
| 55 | 
         
            +
                    self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                @torch.no_grad()
         
     | 
| 58 | 
         
            +
                def sample(self,
         
     | 
| 59 | 
         
            +
                           S,
         
     | 
| 60 | 
         
            +
                           batch_size,
         
     | 
| 61 | 
         
            +
                           shape,
         
     | 
| 62 | 
         
            +
                           conditioning=None,
         
     | 
| 63 | 
         
            +
                           callback=None,
         
     | 
| 64 | 
         
            +
                           normals_sequence=None,
         
     | 
| 65 | 
         
            +
                           img_callback=None,
         
     | 
| 66 | 
         
            +
                           quantize_x0=False,
         
     | 
| 67 | 
         
            +
                           eta=0.,
         
     | 
| 68 | 
         
            +
                           mask=None,
         
     | 
| 69 | 
         
            +
                           x0=None,
         
     | 
| 70 | 
         
            +
                           temperature=1.,
         
     | 
| 71 | 
         
            +
                           noise_dropout=0.,
         
     | 
| 72 | 
         
            +
                           score_corrector=None,
         
     | 
| 73 | 
         
            +
                           corrector_kwargs=None,
         
     | 
| 74 | 
         
            +
                           verbose=True,
         
     | 
| 75 | 
         
            +
                           x_T=None,
         
     | 
| 76 | 
         
            +
                           log_every_t=100,
         
     | 
| 77 | 
         
            +
                           unconditional_guidance_scale=1.,
         
     | 
| 78 | 
         
            +
                           unconditional_conditioning=None,
         
     | 
| 79 | 
         
            +
                           # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
         
     | 
| 80 | 
         
            +
                           **kwargs
         
     | 
| 81 | 
         
            +
                           ):
         
     | 
| 82 | 
         
            +
                    if conditioning is not None:
         
     | 
| 83 | 
         
            +
                        if isinstance(conditioning, dict):
         
     | 
| 84 | 
         
            +
                            cbs = conditioning[list(conditioning.keys())[0]].shape[0]
         
     | 
| 85 | 
         
            +
                            if cbs != batch_size:
         
     | 
| 86 | 
         
            +
                                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         
     | 
| 87 | 
         
            +
                        else:
         
     | 
| 88 | 
         
            +
                            if conditioning.shape[0] != batch_size:
         
     | 
| 89 | 
         
            +
                                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                    self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
         
     | 
| 92 | 
         
            +
                    # sampling
         
     | 
| 93 | 
         
            +
                    C, H, W = shape
         
     | 
| 94 | 
         
            +
                    size = (batch_size, C, H, W)
         
     | 
| 95 | 
         
            +
                    print(f'Data shape for PLMS sampling is {size}')
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                    samples, intermediates = self.plms_sampling(conditioning, size,
         
     | 
| 98 | 
         
            +
                                                                callback=callback,
         
     | 
| 99 | 
         
            +
                                                                img_callback=img_callback,
         
     | 
| 100 | 
         
            +
                                                                quantize_denoised=quantize_x0,
         
     | 
| 101 | 
         
            +
                                                                mask=mask, x0=x0,
         
     | 
| 102 | 
         
            +
                                                                ddim_use_original_steps=False,
         
     | 
| 103 | 
         
            +
                                                                noise_dropout=noise_dropout,
         
     | 
| 104 | 
         
            +
                                                                temperature=temperature,
         
     | 
| 105 | 
         
            +
                                                                score_corrector=score_corrector,
         
     | 
| 106 | 
         
            +
                                                                corrector_kwargs=corrector_kwargs,
         
     | 
| 107 | 
         
            +
                                                                x_T=x_T,
         
     | 
| 108 | 
         
            +
                                                                log_every_t=log_every_t,
         
     | 
| 109 | 
         
            +
                                                                unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 110 | 
         
            +
                                                                unconditional_conditioning=unconditional_conditioning,
         
     | 
| 111 | 
         
            +
                                                                )
         
     | 
| 112 | 
         
            +
                    return samples, intermediates
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                @torch.no_grad()
         
     | 
| 115 | 
         
            +
                def plms_sampling(self, cond, shape,
         
     | 
| 116 | 
         
            +
                                  x_T=None, ddim_use_original_steps=False,
         
     | 
| 117 | 
         
            +
                                  callback=None, timesteps=None, quantize_denoised=False,
         
     | 
| 118 | 
         
            +
                                  mask=None, x0=None, img_callback=None, log_every_t=100,
         
     | 
| 119 | 
         
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 120 | 
         
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None,):
         
     | 
| 121 | 
         
            +
                    device = self.model.betas.device
         
     | 
| 122 | 
         
            +
                    b = shape[0]
         
     | 
| 123 | 
         
            +
                    if x_T is None:
         
     | 
| 124 | 
         
            +
                        img = torch.randn(shape, device=device)
         
     | 
| 125 | 
         
            +
                    else:
         
     | 
| 126 | 
         
            +
                        img = x_T
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                    if timesteps is None:
         
     | 
| 129 | 
         
            +
                        timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
         
     | 
| 130 | 
         
            +
                    elif timesteps is not None and not ddim_use_original_steps:
         
     | 
| 131 | 
         
            +
                        subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
         
     | 
| 132 | 
         
            +
                        timesteps = self.ddim_timesteps[:subset_end]
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                    intermediates = {'x_inter': [img], 'pred_x0': [img]}
         
     | 
| 135 | 
         
            +
                    time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
         
     | 
| 136 | 
         
            +
                    total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
         
     | 
| 137 | 
         
            +
                    print(f"Running PLMS Sampling with {total_steps} timesteps")
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
         
     | 
| 140 | 
         
            +
                    old_eps = []
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                    for i, step in enumerate(iterator):
         
     | 
| 143 | 
         
            +
                        index = total_steps - i - 1
         
     | 
| 144 | 
         
            +
                        ts = torch.full((b,), step, device=device, dtype=torch.long)
         
     | 
| 145 | 
         
            +
                        ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                        if mask is not None:
         
     | 
| 148 | 
         
            +
                            assert x0 is not None
         
     | 
| 149 | 
         
            +
                            img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
         
     | 
| 150 | 
         
            +
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                        outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
         
     | 
| 153 | 
         
            +
                                                  quantize_denoised=quantize_denoised, temperature=temperature,
         
     | 
| 154 | 
         
            +
                                                  noise_dropout=noise_dropout, score_corrector=score_corrector,
         
     | 
| 155 | 
         
            +
                                                  corrector_kwargs=corrector_kwargs,
         
     | 
| 156 | 
         
            +
                                                  unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 157 | 
         
            +
                                                  unconditional_conditioning=unconditional_conditioning,
         
     | 
| 158 | 
         
            +
                                                  old_eps=old_eps, t_next=ts_next)
         
     | 
| 159 | 
         
            +
                        img, pred_x0, e_t = outs
         
     | 
| 160 | 
         
            +
                        old_eps.append(e_t)
         
     | 
| 161 | 
         
            +
                        if len(old_eps) >= 4:
         
     | 
| 162 | 
         
            +
                            old_eps.pop(0)
         
     | 
| 163 | 
         
            +
                        if callback: callback(i)
         
     | 
| 164 | 
         
            +
                        if img_callback: img_callback(pred_x0, i)
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                        if index % log_every_t == 0 or index == total_steps - 1:
         
     | 
| 167 | 
         
            +
                            intermediates['x_inter'].append(img)
         
     | 
| 168 | 
         
            +
                            intermediates['pred_x0'].append(pred_x0)
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                    return img, intermediates
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                @torch.no_grad()
         
     | 
| 173 | 
         
            +
                def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
         
     | 
| 174 | 
         
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 175 | 
         
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
         
     | 
| 176 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                    def get_model_output(x, t):
         
     | 
| 179 | 
         
            +
                        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
         
     | 
| 180 | 
         
            +
                            e_t = self.model.apply_model(x, t, c)
         
     | 
| 181 | 
         
            +
                        else:
         
     | 
| 182 | 
         
            +
                            x_in = torch.cat([x] * 2)
         
     | 
| 183 | 
         
            +
                            t_in = torch.cat([t] * 2)
         
     | 
| 184 | 
         
            +
                            c_in = torch.cat([unconditional_conditioning, c])
         
     | 
| 185 | 
         
            +
                            e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
         
     | 
| 186 | 
         
            +
                            e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                        if score_corrector is not None:
         
     | 
| 189 | 
         
            +
                            assert self.model.parameterization == "eps"
         
     | 
| 190 | 
         
            +
                            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                        return e_t
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                    alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
         
     | 
| 195 | 
         
            +
                    alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
         
     | 
| 196 | 
         
            +
                    sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
         
     | 
| 197 | 
         
            +
                    sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                    def get_x_prev_and_pred_x0(e_t, index):
         
     | 
| 200 | 
         
            +
                        # select parameters corresponding to the currently considered timestep
         
     | 
| 201 | 
         
            +
                        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
         
     | 
| 202 | 
         
            +
                        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
         
     | 
| 203 | 
         
            +
                        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
         
     | 
| 204 | 
         
            +
                        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                        # current prediction for x_0
         
     | 
| 207 | 
         
            +
                        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
         
     | 
| 208 | 
         
            +
                        if quantize_denoised:
         
     | 
| 209 | 
         
            +
                            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
         
     | 
| 210 | 
         
            +
                        # direction pointing to x_t
         
     | 
| 211 | 
         
            +
                        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
         
     | 
| 212 | 
         
            +
                        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 213 | 
         
            +
                        if noise_dropout > 0.:
         
     | 
| 214 | 
         
            +
                            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 215 | 
         
            +
                        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
         
     | 
| 216 | 
         
            +
                        return x_prev, pred_x0
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                    e_t = get_model_output(x, t)
         
     | 
| 219 | 
         
            +
                    if len(old_eps) == 0:
         
     | 
| 220 | 
         
            +
                        # Pseudo Improved Euler (2nd order)
         
     | 
| 221 | 
         
            +
                        x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
         
     | 
| 222 | 
         
            +
                        e_t_next = get_model_output(x_prev, t_next)
         
     | 
| 223 | 
         
            +
                        e_t_prime = (e_t + e_t_next) / 2
         
     | 
| 224 | 
         
            +
                    elif len(old_eps) == 1:
         
     | 
| 225 | 
         
            +
                        # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
         
     | 
| 226 | 
         
            +
                        e_t_prime = (3 * e_t - old_eps[-1]) / 2
         
     | 
| 227 | 
         
            +
                    elif len(old_eps) == 2:
         
     | 
| 228 | 
         
            +
                        # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
         
     | 
| 229 | 
         
            +
                        e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
         
     | 
| 230 | 
         
            +
                    elif len(old_eps) >= 3:
         
     | 
| 231 | 
         
            +
                        # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
         
     | 
| 232 | 
         
            +
                        e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
         
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
                    x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                    return x_prev, pred_x0, e_t
         
     | 
    	
        ldm/modules/__pycache__/attention.cpython-38.pyc
    ADDED
    
    | 
         Binary file (8.79 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/__pycache__/attention.cpython-39.pyc
    ADDED
    
    | 
         Binary file (8.76 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/__pycache__/ema.cpython-38.pyc
    ADDED
    
    | 
         Binary file (3 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/__pycache__/ema.cpython-39.pyc
    ADDED
    
    | 
         Binary file (2.97 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/__pycache__/x_transformer.cpython-38.pyc
    ADDED
    
    | 
         Binary file (18.3 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/__pycache__/x_transformer.cpython-39.pyc
    ADDED
    
    | 
         Binary file (18.3 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/attention.py
    ADDED
    
    | 
         @@ -0,0 +1,261 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from inspect import isfunction
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 5 | 
         
            +
            from torch import nn, einsum
         
     | 
| 6 | 
         
            +
            from einops import rearrange, repeat
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from ldm.modules.diffusionmodules.util import checkpoint
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            def exists(val):
         
     | 
| 12 | 
         
            +
                return val is not None
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def uniq(arr):
         
     | 
| 16 | 
         
            +
                return{el: True for el in arr}.keys()
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            def default(val, d):
         
     | 
| 20 | 
         
            +
                if exists(val):
         
     | 
| 21 | 
         
            +
                    return val
         
     | 
| 22 | 
         
            +
                return d() if isfunction(d) else d
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            def max_neg_value(t):
         
     | 
| 26 | 
         
            +
                return -torch.finfo(t.dtype).max
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            def init_(tensor):
         
     | 
| 30 | 
         
            +
                dim = tensor.shape[-1]
         
     | 
| 31 | 
         
            +
                std = 1 / math.sqrt(dim)
         
     | 
| 32 | 
         
            +
                tensor.uniform_(-std, std)
         
     | 
| 33 | 
         
            +
                return tensor
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            # feedforward
         
     | 
| 37 | 
         
            +
            class GEGLU(nn.Module):
         
     | 
| 38 | 
         
            +
                def __init__(self, dim_in, dim_out):
         
     | 
| 39 | 
         
            +
                    super().__init__()
         
     | 
| 40 | 
         
            +
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                def forward(self, x):
         
     | 
| 43 | 
         
            +
                    x, gate = self.proj(x).chunk(2, dim=-1)
         
     | 
| 44 | 
         
            +
                    return x * F.gelu(gate)
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            class FeedForward(nn.Module):
         
     | 
| 48 | 
         
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
         
     | 
| 49 | 
         
            +
                    super().__init__()
         
     | 
| 50 | 
         
            +
                    inner_dim = int(dim * mult)
         
     | 
| 51 | 
         
            +
                    dim_out = default(dim_out, dim)
         
     | 
| 52 | 
         
            +
                    project_in = nn.Sequential(
         
     | 
| 53 | 
         
            +
                        nn.Linear(dim, inner_dim),
         
     | 
| 54 | 
         
            +
                        nn.GELU()
         
     | 
| 55 | 
         
            +
                    ) if not glu else GEGLU(dim, inner_dim)
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                    self.net = nn.Sequential(
         
     | 
| 58 | 
         
            +
                        project_in,
         
     | 
| 59 | 
         
            +
                        nn.Dropout(dropout),
         
     | 
| 60 | 
         
            +
                        nn.Linear(inner_dim, dim_out)
         
     | 
| 61 | 
         
            +
                    )
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                def forward(self, x):
         
     | 
| 64 | 
         
            +
                    return self.net(x)
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            def zero_module(module):
         
     | 
| 68 | 
         
            +
                """
         
     | 
| 69 | 
         
            +
                Zero out the parameters of a module and return it.
         
     | 
| 70 | 
         
            +
                """
         
     | 
| 71 | 
         
            +
                for p in module.parameters():
         
     | 
| 72 | 
         
            +
                    p.detach().zero_()
         
     | 
| 73 | 
         
            +
                return module
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            def Normalize(in_channels):
         
     | 
| 77 | 
         
            +
                return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            class LinearAttention(nn.Module):
         
     | 
| 81 | 
         
            +
                def __init__(self, dim, heads=4, dim_head=32):
         
     | 
| 82 | 
         
            +
                    super().__init__()
         
     | 
| 83 | 
         
            +
                    self.heads = heads
         
     | 
| 84 | 
         
            +
                    hidden_dim = dim_head * heads
         
     | 
| 85 | 
         
            +
                    self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
         
     | 
| 86 | 
         
            +
                    self.to_out = nn.Conv2d(hidden_dim, dim, 1)
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                def forward(self, x):
         
     | 
| 89 | 
         
            +
                    b, c, h, w = x.shape
         
     | 
| 90 | 
         
            +
                    qkv = self.to_qkv(x)
         
     | 
| 91 | 
         
            +
                    q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
         
     | 
| 92 | 
         
            +
                    k = k.softmax(dim=-1)  
         
     | 
| 93 | 
         
            +
                    context = torch.einsum('bhdn,bhen->bhde', k, v)
         
     | 
| 94 | 
         
            +
                    out = torch.einsum('bhde,bhdn->bhen', context, q)
         
     | 
| 95 | 
         
            +
                    out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
         
     | 
| 96 | 
         
            +
                    return self.to_out(out)
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
            class SpatialSelfAttention(nn.Module):
         
     | 
| 100 | 
         
            +
                def __init__(self, in_channels):
         
     | 
| 101 | 
         
            +
                    super().__init__()
         
     | 
| 102 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    self.norm = Normalize(in_channels)
         
     | 
| 105 | 
         
            +
                    self.q = torch.nn.Conv2d(in_channels,
         
     | 
| 106 | 
         
            +
                                             in_channels,
         
     | 
| 107 | 
         
            +
                                             kernel_size=1,
         
     | 
| 108 | 
         
            +
                                             stride=1,
         
     | 
| 109 | 
         
            +
                                             padding=0)
         
     | 
| 110 | 
         
            +
                    self.k = torch.nn.Conv2d(in_channels,
         
     | 
| 111 | 
         
            +
                                             in_channels,
         
     | 
| 112 | 
         
            +
                                             kernel_size=1,
         
     | 
| 113 | 
         
            +
                                             stride=1,
         
     | 
| 114 | 
         
            +
                                             padding=0)
         
     | 
| 115 | 
         
            +
                    self.v = torch.nn.Conv2d(in_channels,
         
     | 
| 116 | 
         
            +
                                             in_channels,
         
     | 
| 117 | 
         
            +
                                             kernel_size=1,
         
     | 
| 118 | 
         
            +
                                             stride=1,
         
     | 
| 119 | 
         
            +
                                             padding=0)
         
     | 
| 120 | 
         
            +
                    self.proj_out = torch.nn.Conv2d(in_channels,
         
     | 
| 121 | 
         
            +
                                                    in_channels,
         
     | 
| 122 | 
         
            +
                                                    kernel_size=1,
         
     | 
| 123 | 
         
            +
                                                    stride=1,
         
     | 
| 124 | 
         
            +
                                                    padding=0)
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                def forward(self, x):
         
     | 
| 127 | 
         
            +
                    h_ = x
         
     | 
| 128 | 
         
            +
                    h_ = self.norm(h_)
         
     | 
| 129 | 
         
            +
                    q = self.q(h_)
         
     | 
| 130 | 
         
            +
                    k = self.k(h_)
         
     | 
| 131 | 
         
            +
                    v = self.v(h_)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    # compute attention
         
     | 
| 134 | 
         
            +
                    b,c,h,w = q.shape
         
     | 
| 135 | 
         
            +
                    q = rearrange(q, 'b c h w -> b (h w) c')
         
     | 
| 136 | 
         
            +
                    k = rearrange(k, 'b c h w -> b c (h w)')
         
     | 
| 137 | 
         
            +
                    w_ = torch.einsum('bij,bjk->bik', q, k)
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    w_ = w_ * (int(c)**(-0.5))
         
     | 
| 140 | 
         
            +
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                    # attend to values
         
     | 
| 143 | 
         
            +
                    v = rearrange(v, 'b c h w -> b c (h w)')
         
     | 
| 144 | 
         
            +
                    w_ = rearrange(w_, 'b i j -> b j i')
         
     | 
| 145 | 
         
            +
                    h_ = torch.einsum('bij,bjk->bik', v, w_)
         
     | 
| 146 | 
         
            +
                    h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
         
     | 
| 147 | 
         
            +
                    h_ = self.proj_out(h_)
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                    return x+h_
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
            class CrossAttention(nn.Module):
         
     | 
| 153 | 
         
            +
                def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):# 如果设置了context_dim就不是自注意力了
         
     | 
| 154 | 
         
            +
                    super().__init__()
         
     | 
| 155 | 
         
            +
                    inner_dim = dim_head * heads # inner_dim == SpatialTransformer.model_channels
         
     | 
| 156 | 
         
            +
                    context_dim = default(context_dim, query_dim)
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                    self.scale = dim_head ** -0.5
         
     | 
| 159 | 
         
            +
                    self.heads = heads
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         
     | 
| 162 | 
         
            +
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 163 | 
         
            +
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                    self.to_out = nn.Sequential(
         
     | 
| 166 | 
         
            +
                        nn.Linear(inner_dim, query_dim),
         
     | 
| 167 | 
         
            +
                        nn.Dropout(dropout)
         
     | 
| 168 | 
         
            +
                    )
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                def forward(self, x, context=None, mask=None):# x:(b,h*w,c), context:(b,seq_len,context_dim)
         
     | 
| 171 | 
         
            +
                    h = self.heads
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                    q = self.to_q(x)# q:(b,h*w,inner_dim)
         
     | 
| 174 | 
         
            +
                    context = default(context, x)
         
     | 
| 175 | 
         
            +
                    k = self.to_k(context)# (b,seq_len,inner_dim)
         
     | 
| 176 | 
         
            +
                    v = self.to_v(context)# (b,seq_len,inner_dim)
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))# n is seq_len for k and v
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                    sim = einsum('b i d, b j d -> b i j', q, k) * self.scale # (b*head,h*w,seq_len)
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                    if exists(mask):# false
         
     | 
| 183 | 
         
            +
                        mask = rearrange(mask, 'b ... -> b (...)')
         
     | 
| 184 | 
         
            +
                        max_neg_value = -torch.finfo(sim.dtype).max
         
     | 
| 185 | 
         
            +
                        mask = repeat(mask, 'b j -> (b h) () j', h=h)
         
     | 
| 186 | 
         
            +
                        sim.masked_fill_(~mask, max_neg_value)
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                    # attention, what we cannot get enough of
         
     | 
| 189 | 
         
            +
                    attn = sim.softmax(dim=-1)
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                    out = einsum('b i j, b j d -> b i d', attn, v)# (b*head,h*w,inner_dim/head)
         
     | 
| 192 | 
         
            +
                    out = rearrange(out, '(b h) n d -> b n (h d)', h=h)# (b,h*w,inner_dim)
         
     | 
| 193 | 
         
            +
                    return self.to_out(out)
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
            class BasicTransformerBlock(nn.Module):
         
     | 
| 197 | 
         
            +
                def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
         
     | 
| 198 | 
         
            +
                    super().__init__()
         
     | 
| 199 | 
         
            +
                    self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout)  # is a self-attention
         
     | 
| 200 | 
         
            +
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         
     | 
| 201 | 
         
            +
                    self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
         
     | 
| 202 | 
         
            +
                                                heads=n_heads, dim_head=d_head, dropout=dropout)  # is self-attn if context is none
         
     | 
| 203 | 
         
            +
                    self.norm1 = nn.LayerNorm(dim)
         
     | 
| 204 | 
         
            +
                    self.norm2 = nn.LayerNorm(dim)
         
     | 
| 205 | 
         
            +
                    self.norm3 = nn.LayerNorm(dim)
         
     | 
| 206 | 
         
            +
                    self.checkpoint = checkpoint
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                def forward(self, x, context=None):
         
     | 
| 209 | 
         
            +
                    return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                def _forward(self, x, context=None):
         
     | 
| 212 | 
         
            +
                    x = self.attn1(self.norm1(x)) + x
         
     | 
| 213 | 
         
            +
                    x = self.attn2(self.norm2(x), context=context) + x
         
     | 
| 214 | 
         
            +
                    x = self.ff(self.norm3(x)) + x
         
     | 
| 215 | 
         
            +
                    return x
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
            class SpatialTransformer(nn.Module):
         
     | 
| 219 | 
         
            +
                """
         
     | 
| 220 | 
         
            +
                Transformer block for image-like data.
         
     | 
| 221 | 
         
            +
                First, project the input (aka embedding)
         
     | 
| 222 | 
         
            +
                and reshape to b, t, d.
         
     | 
| 223 | 
         
            +
                Then apply standard transformer action.
         
     | 
| 224 | 
         
            +
                Finally, reshape to image
         
     | 
| 225 | 
         
            +
                """
         
     | 
| 226 | 
         
            +
                def __init__(self, in_channels, n_heads, d_head,
         
     | 
| 227 | 
         
            +
                             depth=1, dropout=0., context_dim=None):
         
     | 
| 228 | 
         
            +
                    super().__init__()
         
     | 
| 229 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 230 | 
         
            +
                    inner_dim = n_heads * d_head 
         
     | 
| 231 | 
         
            +
                    self.norm = Normalize(in_channels)
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                    self.proj_in = nn.Conv2d(in_channels,
         
     | 
| 234 | 
         
            +
                                             inner_dim,
         
     | 
| 235 | 
         
            +
                                             kernel_size=1,
         
     | 
| 236 | 
         
            +
                                             stride=1,
         
     | 
| 237 | 
         
            +
                                             padding=0)
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                    self.transformer_blocks = nn.ModuleList(
         
     | 
| 240 | 
         
            +
                        [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
         
     | 
| 241 | 
         
            +
                            for d in range(depth)]
         
     | 
| 242 | 
         
            +
                    )
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                    self.proj_out = zero_module(nn.Conv2d(inner_dim,
         
     | 
| 245 | 
         
            +
                                                          in_channels,
         
     | 
| 246 | 
         
            +
                                                          kernel_size=1,
         
     | 
| 247 | 
         
            +
                                                          stride=1,
         
     | 
| 248 | 
         
            +
                                                          padding=0))
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                def forward(self, x, context=None):
         
     | 
| 251 | 
         
            +
                    # note: if no context is given, cross-attention defaults to self-attention
         
     | 
| 252 | 
         
            +
                    b, c, h, w = x.shape # such as [2,320,10,106]
         
     | 
| 253 | 
         
            +
                    x_in = x
         
     | 
| 254 | 
         
            +
                    x = self.norm(x)# group norm
         
     | 
| 255 | 
         
            +
                    x = self.proj_in(x)# no shape change
         
     | 
| 256 | 
         
            +
                    x = rearrange(x, 'b c h w -> b (h w) c')
         
     | 
| 257 | 
         
            +
                    for block in self.transformer_blocks:
         
     | 
| 258 | 
         
            +
                        x = block(x, context=context)# context shape [b,seq_len=77,context_dim]
         
     | 
| 259 | 
         
            +
                    x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
         
     | 
| 260 | 
         
            +
                    x = self.proj_out(x)
         
     | 
| 261 | 
         
            +
                    return x + x_in
         
     | 
    	
        ldm/modules/diffusionmodules/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        ldm/modules/diffusionmodules/__pycache__/__init__.cpython-38.pyc
    ADDED
    
    | 
         Binary file (183 Bytes). View file 
     | 
| 
         | 
    	
        ldm/modules/diffusionmodules/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | 
         Binary file (160 Bytes). View file 
     | 
| 
         | 
    	
        ldm/modules/diffusionmodules/__pycache__/custom_openaimodel.cpython-38.pyc
    ADDED
    
    | 
         Binary file (8.04 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/diffusionmodules/__pycache__/model.cpython-38.pyc
    ADDED
    
    | 
         Binary file (20.7 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/diffusionmodules/__pycache__/model.cpython-39.pyc
    ADDED
    
    | 
         Binary file (20.6 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-38.pyc
    ADDED
    
    | 
         Binary file (22.8 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-39.pyc
    ADDED
    
    | 
         Binary file (22.7 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/diffusionmodules/__pycache__/util.cpython-38.pyc
    ADDED
    
    | 
         Binary file (9.47 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/diffusionmodules/__pycache__/util.cpython-39.pyc
    ADDED
    
    | 
         Binary file (9.51 kB). View file 
     | 
| 
         | 
    	
        ldm/modules/diffusionmodules/custom_openaimodel.py
    ADDED
    
    | 
         @@ -0,0 +1,368 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from abc import abstractmethod
         
     | 
| 2 | 
         
            +
            from functools import partial
         
     | 
| 3 | 
         
            +
            import math
         
     | 
| 4 | 
         
            +
            from typing import Iterable
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            import numpy as np
         
     | 
| 7 | 
         
            +
            import torch as th
         
     | 
| 8 | 
         
            +
            import torch.nn as nn
         
     | 
| 9 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            from ldm.modules.diffusionmodules.util import (
         
     | 
| 12 | 
         
            +
                checkpoint,
         
     | 
| 13 | 
         
            +
                conv_nd,
         
     | 
| 14 | 
         
            +
                linear,
         
     | 
| 15 | 
         
            +
                avg_pool_nd,
         
     | 
| 16 | 
         
            +
                zero_module,
         
     | 
| 17 | 
         
            +
                normalization,
         
     | 
| 18 | 
         
            +
                timestep_embedding,
         
     | 
| 19 | 
         
            +
            )
         
     | 
| 20 | 
         
            +
            from ldm.modules.attention import SpatialTransformer
         
     | 
| 21 | 
         
            +
            from ldm.modules.diffusionmodules.openaimodel import convert_module_to_f16, convert_module_to_f32, AttentionPool2d, \
         
     | 
| 22 | 
         
            +
                TimestepBlock, TimestepEmbedSequential, Upsample, TransposedUpsample, Downsample, ResBlock, AttentionBlock, count_flops_attn, \
         
     | 
| 23 | 
         
            +
                QKVAttentionLegacy, QKVAttention
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            class UNetModel(nn.Module):
         
     | 
| 27 | 
         
            +
                """
         
     | 
| 28 | 
         
            +
                The full UNet model with attention and timestep embedding.
         
     | 
| 29 | 
         
            +
                :param in_channels: channels in the input Tensor.
         
     | 
| 30 | 
         
            +
                :param model_channels: base channel count for the model.
         
     | 
| 31 | 
         
            +
                :param out_channels: channels in the output Tensor.
         
     | 
| 32 | 
         
            +
                :param num_res_blocks: number of residual blocks per downsample.
         
     | 
| 33 | 
         
            +
                :param attention_resolutions: a collection of downsample rates at which
         
     | 
| 34 | 
         
            +
                    attention will take place. May be a set, list, or tuple.
         
     | 
| 35 | 
         
            +
                    For example, if this contains 4, then at 4x downsampling, attention
         
     | 
| 36 | 
         
            +
                    will be used.
         
     | 
| 37 | 
         
            +
                :param dropout: the dropout probability.
         
     | 
| 38 | 
         
            +
                :param channel_mult: channel multiplier for each level of the UNet.
         
     | 
| 39 | 
         
            +
                :param conv_resample: if True, use learned convolutions for upsampling and
         
     | 
| 40 | 
         
            +
                    downsampling.
         
     | 
| 41 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         
     | 
| 42 | 
         
            +
                :param num_classes: if specified (as an int), then this model will be
         
     | 
| 43 | 
         
            +
                    class-conditional with `num_classes` classes.
         
     | 
| 44 | 
         
            +
                :param use_checkpoint: use gradient checkpointing to reduce memory usage.
         
     | 
| 45 | 
         
            +
                :param num_heads: the number of attention heads in each attention layer.
         
     | 
| 46 | 
         
            +
                :param num_heads_channels: if specified, ignore num_heads and instead use
         
     | 
| 47 | 
         
            +
                                           a fixed channel width per attention head.
         
     | 
| 48 | 
         
            +
                :param num_heads_upsample: works with num_heads to set a different number
         
     | 
| 49 | 
         
            +
                                           of heads for upsampling. Deprecated.
         
     | 
| 50 | 
         
            +
                :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
         
     | 
| 51 | 
         
            +
                :param resblock_updown: use residual blocks for up/downsampling.
         
     | 
| 52 | 
         
            +
                :param use_new_attention_order: use a different attention pattern for potentially
         
     | 
| 53 | 
         
            +
                                                increased efficiency.
         
     | 
| 54 | 
         
            +
                """
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                def __init__(
         
     | 
| 57 | 
         
            +
                    self,
         
     | 
| 58 | 
         
            +
                    image_size,
         
     | 
| 59 | 
         
            +
                    in_channels,
         
     | 
| 60 | 
         
            +
                    model_channels,
         
     | 
| 61 | 
         
            +
                    out_channels,
         
     | 
| 62 | 
         
            +
                    num_res_blocks,
         
     | 
| 63 | 
         
            +
                    attention_resolutions,
         
     | 
| 64 | 
         
            +
                    dropout=0,
         
     | 
| 65 | 
         
            +
                    channel_mult=(1, 2, 4, 8),
         
     | 
| 66 | 
         
            +
                    conv_resample=True,
         
     | 
| 67 | 
         
            +
                    dims=2,
         
     | 
| 68 | 
         
            +
                    num_classes=None,
         
     | 
| 69 | 
         
            +
                    use_checkpoint=False,
         
     | 
| 70 | 
         
            +
                    use_fp16=False,
         
     | 
| 71 | 
         
            +
                    num_heads=-1,
         
     | 
| 72 | 
         
            +
                    num_head_channels=-1,
         
     | 
| 73 | 
         
            +
                    num_heads_upsample=-1,
         
     | 
| 74 | 
         
            +
                    use_scale_shift_norm=False,
         
     | 
| 75 | 
         
            +
                    resblock_updown=False,
         
     | 
| 76 | 
         
            +
                    use_new_attention_order=False,
         
     | 
| 77 | 
         
            +
                    use_spatial_transformer=False,    # custom transformer support
         
     | 
| 78 | 
         
            +
                    transformer_depth=1,              # custom transformer support
         
     | 
| 79 | 
         
            +
                    context_dim=None,                 # custom transformer support
         
     | 
| 80 | 
         
            +
                    n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
         
     | 
| 81 | 
         
            +
                    legacy=True,
         
     | 
| 82 | 
         
            +
                    use_context_project=False,        # custom text to audio support
         
     | 
| 83 | 
         
            +
                    use_context_attn=True             # custom text to audio support
         
     | 
| 84 | 
         
            +
                ):
         
     | 
| 85 | 
         
            +
                    super().__init__()
         
     | 
| 86 | 
         
            +
                    if use_spatial_transformer:
         
     | 
| 87 | 
         
            +
                        assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                    if context_dim is not None and not use_context_project:
         
     | 
| 90 | 
         
            +
                        assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
         
     | 
| 91 | 
         
            +
                        from omegaconf.listconfig import ListConfig
         
     | 
| 92 | 
         
            +
                        if type(context_dim) == ListConfig:
         
     | 
| 93 | 
         
            +
                            context_dim = list(context_dim)
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                    if num_heads_upsample == -1:
         
     | 
| 96 | 
         
            +
                        num_heads_upsample = num_heads
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                    if num_heads == -1:
         
     | 
| 99 | 
         
            +
                        assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    if num_head_channels == -1:
         
     | 
| 102 | 
         
            +
                        assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    self.image_size = image_size
         
     | 
| 105 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 106 | 
         
            +
                    self.model_channels = model_channels
         
     | 
| 107 | 
         
            +
                    self.out_channels = out_channels
         
     | 
| 108 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 109 | 
         
            +
                    self.attention_resolutions = attention_resolutions
         
     | 
| 110 | 
         
            +
                    self.dropout = dropout
         
     | 
| 111 | 
         
            +
                    self.channel_mult = channel_mult
         
     | 
| 112 | 
         
            +
                    self.conv_resample = conv_resample
         
     | 
| 113 | 
         
            +
                    self.num_classes = num_classes
         
     | 
| 114 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 115 | 
         
            +
                    self.dtype = th.float16 if use_fp16 else th.float32
         
     | 
| 116 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 117 | 
         
            +
                    self.num_head_channels = num_head_channels
         
     | 
| 118 | 
         
            +
                    self.num_heads_upsample = num_heads_upsample
         
     | 
| 119 | 
         
            +
                    self.predict_codebook_ids = n_embed is not None
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                    time_embed_dim = model_channels * 4
         
     | 
| 122 | 
         
            +
                    self.time_embed = nn.Sequential(
         
     | 
| 123 | 
         
            +
                        linear(model_channels, time_embed_dim),
         
     | 
| 124 | 
         
            +
                        nn.SiLU(),
         
     | 
| 125 | 
         
            +
                        linear(time_embed_dim, time_embed_dim),
         
     | 
| 126 | 
         
            +
                    )
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                    if self.num_classes is not None:
         
     | 
| 129 | 
         
            +
                        self.label_emb = nn.Embedding(num_classes, time_embed_dim)
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                    self.input_blocks = nn.ModuleList(
         
     | 
| 132 | 
         
            +
                        [
         
     | 
| 133 | 
         
            +
                            TimestepEmbedSequential(
         
     | 
| 134 | 
         
            +
                                conv_nd(dims, in_channels, model_channels, 3, padding=1)
         
     | 
| 135 | 
         
            +
                            )
         
     | 
| 136 | 
         
            +
                        ]
         
     | 
| 137 | 
         
            +
                    )
         
     | 
| 138 | 
         
            +
                    self._feature_size = model_channels
         
     | 
| 139 | 
         
            +
                    input_block_chans = [model_channels]
         
     | 
| 140 | 
         
            +
                    ch = model_channels
         
     | 
| 141 | 
         
            +
                    ds = 1
         
     | 
| 142 | 
         
            +
                    for level, mult in enumerate(channel_mult):
         
     | 
| 143 | 
         
            +
                        for _ in range(num_res_blocks):
         
     | 
| 144 | 
         
            +
                            layers = [
         
     | 
| 145 | 
         
            +
                                ResBlock(
         
     | 
| 146 | 
         
            +
                                    ch,
         
     | 
| 147 | 
         
            +
                                    time_embed_dim,
         
     | 
| 148 | 
         
            +
                                    dropout,
         
     | 
| 149 | 
         
            +
                                    out_channels=mult * model_channels,
         
     | 
| 150 | 
         
            +
                                    dims=dims,
         
     | 
| 151 | 
         
            +
                                    use_checkpoint=use_checkpoint,
         
     | 
| 152 | 
         
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 153 | 
         
            +
                                )
         
     | 
| 154 | 
         
            +
                            ]
         
     | 
| 155 | 
         
            +
                            ch = mult * model_channels
         
     | 
| 156 | 
         
            +
                            if ds in attention_resolutions:
         
     | 
| 157 | 
         
            +
                                if num_head_channels == -1:
         
     | 
| 158 | 
         
            +
                                    dim_head = ch // num_heads
         
     | 
| 159 | 
         
            +
                                else:
         
     | 
| 160 | 
         
            +
                                    num_heads = ch // num_head_channels
         
     | 
| 161 | 
         
            +
                                    dim_head = num_head_channels
         
     | 
| 162 | 
         
            +
                                if legacy:
         
     | 
| 163 | 
         
            +
                                    #num_heads = 1
         
     | 
| 164 | 
         
            +
                                    dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 165 | 
         
            +
                                layers.append(
         
     | 
| 166 | 
         
            +
                                    AttentionBlock(
         
     | 
| 167 | 
         
            +
                                        ch,
         
     | 
| 168 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 169 | 
         
            +
                                        num_heads=num_heads,
         
     | 
| 170 | 
         
            +
                                        num_head_channels=dim_head,
         
     | 
| 171 | 
         
            +
                                        use_new_attention_order=use_new_attention_order,
         
     | 
| 172 | 
         
            +
                                    ) if not use_spatial_transformer else SpatialTransformer(
         
     | 
| 173 | 
         
            +
                                        ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
         
     | 
| 174 | 
         
            +
                                    )
         
     | 
| 175 | 
         
            +
                                )
         
     | 
| 176 | 
         
            +
                            self.input_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 177 | 
         
            +
                            self._feature_size += ch
         
     | 
| 178 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 179 | 
         
            +
                        if level != len(channel_mult) - 1:
         
     | 
| 180 | 
         
            +
                            out_ch = ch
         
     | 
| 181 | 
         
            +
                            self.input_blocks.append(
         
     | 
| 182 | 
         
            +
                                TimestepEmbedSequential(
         
     | 
| 183 | 
         
            +
                                    ResBlock(
         
     | 
| 184 | 
         
            +
                                        ch,
         
     | 
| 185 | 
         
            +
                                        time_embed_dim,
         
     | 
| 186 | 
         
            +
                                        dropout,
         
     | 
| 187 | 
         
            +
                                        out_channels=out_ch,
         
     | 
| 188 | 
         
            +
                                        dims=dims,
         
     | 
| 189 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 190 | 
         
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 191 | 
         
            +
                                        down=True,
         
     | 
| 192 | 
         
            +
                                    )
         
     | 
| 193 | 
         
            +
                                    if resblock_updown
         
     | 
| 194 | 
         
            +
                                    else Downsample(
         
     | 
| 195 | 
         
            +
                                        ch, conv_resample, dims=dims, out_channels=out_ch
         
     | 
| 196 | 
         
            +
                                    )
         
     | 
| 197 | 
         
            +
                                )
         
     | 
| 198 | 
         
            +
                            )
         
     | 
| 199 | 
         
            +
                            ch = out_ch
         
     | 
| 200 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 201 | 
         
            +
                            ds *= 2
         
     | 
| 202 | 
         
            +
                            self._feature_size += ch
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                    if num_head_channels == -1:
         
     | 
| 205 | 
         
            +
                        dim_head = ch // num_heads
         
     | 
| 206 | 
         
            +
                    else:
         
     | 
| 207 | 
         
            +
                        num_heads = ch // num_head_channels
         
     | 
| 208 | 
         
            +
                        dim_head = num_head_channels
         
     | 
| 209 | 
         
            +
                    if legacy:
         
     | 
| 210 | 
         
            +
                        #num_heads = 1
         
     | 
| 211 | 
         
            +
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 212 | 
         
            +
                    self.middle_block = TimestepEmbedSequential(
         
     | 
| 213 | 
         
            +
                        ResBlock(
         
     | 
| 214 | 
         
            +
                            ch,
         
     | 
| 215 | 
         
            +
                            time_embed_dim,
         
     | 
| 216 | 
         
            +
                            dropout,
         
     | 
| 217 | 
         
            +
                            dims=dims,
         
     | 
| 218 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 219 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 220 | 
         
            +
                        ),
         
     | 
| 221 | 
         
            +
                        AttentionBlock(
         
     | 
| 222 | 
         
            +
                            ch,
         
     | 
| 223 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 224 | 
         
            +
                            num_heads=num_heads,
         
     | 
| 225 | 
         
            +
                            num_head_channels=dim_head,
         
     | 
| 226 | 
         
            +
                            use_new_attention_order=use_new_attention_order,
         
     | 
| 227 | 
         
            +
                        ) if not use_spatial_transformer else SpatialTransformer(
         
     | 
| 228 | 
         
            +
                                        ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
         
     | 
| 229 | 
         
            +
                                    ),
         
     | 
| 230 | 
         
            +
                        ResBlock(
         
     | 
| 231 | 
         
            +
                            ch,
         
     | 
| 232 | 
         
            +
                            time_embed_dim,
         
     | 
| 233 | 
         
            +
                            dropout,
         
     | 
| 234 | 
         
            +
                            dims=dims,
         
     | 
| 235 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 236 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 237 | 
         
            +
                        ),
         
     | 
| 238 | 
         
            +
                    )
         
     | 
| 239 | 
         
            +
                    self._feature_size += ch
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
                    self.output_blocks = nn.ModuleList([])
         
     | 
| 242 | 
         
            +
                    for level, mult in list(enumerate(channel_mult))[::-1]:
         
     | 
| 243 | 
         
            +
                        for i in range(num_res_blocks + 1):
         
     | 
| 244 | 
         
            +
                            ich = input_block_chans.pop()
         
     | 
| 245 | 
         
            +
                            layers = [
         
     | 
| 246 | 
         
            +
                                ResBlock(
         
     | 
| 247 | 
         
            +
                                    ch + ich,
         
     | 
| 248 | 
         
            +
                                    time_embed_dim,
         
     | 
| 249 | 
         
            +
                                    dropout,
         
     | 
| 250 | 
         
            +
                                    out_channels=model_channels * mult,
         
     | 
| 251 | 
         
            +
                                    dims=dims,
         
     | 
| 252 | 
         
            +
                                    use_checkpoint=use_checkpoint,
         
     | 
| 253 | 
         
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 254 | 
         
            +
                                )
         
     | 
| 255 | 
         
            +
                            ]
         
     | 
| 256 | 
         
            +
                            ch = model_channels * mult
         
     | 
| 257 | 
         
            +
                            if ds in attention_resolutions:
         
     | 
| 258 | 
         
            +
                                if num_head_channels == -1:
         
     | 
| 259 | 
         
            +
                                    dim_head = ch // num_heads
         
     | 
| 260 | 
         
            +
                                else:
         
     | 
| 261 | 
         
            +
                                    num_heads = ch // num_head_channels
         
     | 
| 262 | 
         
            +
                                    dim_head = num_head_channels
         
     | 
| 263 | 
         
            +
                                if legacy:
         
     | 
| 264 | 
         
            +
                                    #num_heads = 1
         
     | 
| 265 | 
         
            +
                                    dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 266 | 
         
            +
                                layers.append(
         
     | 
| 267 | 
         
            +
                                    AttentionBlock(
         
     | 
| 268 | 
         
            +
                                        ch,
         
     | 
| 269 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 270 | 
         
            +
                                        num_heads=num_heads_upsample,
         
     | 
| 271 | 
         
            +
                                        num_head_channels=dim_head,
         
     | 
| 272 | 
         
            +
                                        use_new_attention_order=use_new_attention_order,
         
     | 
| 273 | 
         
            +
                                    ) if not use_spatial_transformer else SpatialTransformer(
         
     | 
| 274 | 
         
            +
                                        ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
         
     | 
| 275 | 
         
            +
                                    )
         
     | 
| 276 | 
         
            +
                                )
         
     | 
| 277 | 
         
            +
                            if level and i == num_res_blocks:
         
     | 
| 278 | 
         
            +
                                out_ch = ch
         
     | 
| 279 | 
         
            +
                                layers.append(
         
     | 
| 280 | 
         
            +
                                    ResBlock(
         
     | 
| 281 | 
         
            +
                                        ch,
         
     | 
| 282 | 
         
            +
                                        time_embed_dim,
         
     | 
| 283 | 
         
            +
                                        dropout,
         
     | 
| 284 | 
         
            +
                                        out_channels=out_ch,
         
     | 
| 285 | 
         
            +
                                        dims=dims,
         
     | 
| 286 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 287 | 
         
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 288 | 
         
            +
                                        up=True,
         
     | 
| 289 | 
         
            +
                                    )
         
     | 
| 290 | 
         
            +
                                    if resblock_updown
         
     | 
| 291 | 
         
            +
                                    else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
         
     | 
| 292 | 
         
            +
                                )
         
     | 
| 293 | 
         
            +
                                ds //= 2
         
     | 
| 294 | 
         
            +
                            self.output_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 295 | 
         
            +
                            self._feature_size += ch
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                    self.out = nn.Sequential(
         
     | 
| 298 | 
         
            +
                        normalization(ch),
         
     | 
| 299 | 
         
            +
                        nn.SiLU(),
         
     | 
| 300 | 
         
            +
                        zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
         
     | 
| 301 | 
         
            +
                    )
         
     | 
| 302 | 
         
            +
                    if self.predict_codebook_ids:
         
     | 
| 303 | 
         
            +
                        self.id_predictor = nn.Sequential(
         
     | 
| 304 | 
         
            +
                        normalization(ch),
         
     | 
| 305 | 
         
            +
                        conv_nd(dims, model_channels, n_embed, 1),
         
     | 
| 306 | 
         
            +
                        #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         
     | 
| 307 | 
         
            +
                    )
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                    self.use_context_project = use_context_project
         
     | 
| 310 | 
         
            +
                    if use_context_project:
         
     | 
| 311 | 
         
            +
                        self.context_project = linear(context_dim, time_embed_dim)
         
     | 
| 312 | 
         
            +
                    self.use_context_attn = use_context_attn
         
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                def convert_to_fp16(self):
         
     | 
| 316 | 
         
            +
                    """
         
     | 
| 317 | 
         
            +
                    Convert the torso of the model to float16.
         
     | 
| 318 | 
         
            +
                    """
         
     | 
| 319 | 
         
            +
                    self.input_blocks.apply(convert_module_to_f16)
         
     | 
| 320 | 
         
            +
                    self.middle_block.apply(convert_module_to_f16)
         
     | 
| 321 | 
         
            +
                    self.output_blocks.apply(convert_module_to_f16)
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
                def convert_to_fp32(self):
         
     | 
| 324 | 
         
            +
                    """
         
     | 
| 325 | 
         
            +
                    Convert the torso of the model to float32.
         
     | 
| 326 | 
         
            +
                    """
         
     | 
| 327 | 
         
            +
                    self.input_blocks.apply(convert_module_to_f32)
         
     | 
| 328 | 
         
            +
                    self.middle_block.apply(convert_module_to_f32)
         
     | 
| 329 | 
         
            +
                    self.output_blocks.apply(convert_module_to_f32)
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
         
     | 
| 332 | 
         
            +
                    """
         
     | 
| 333 | 
         
            +
                    Apply the model to an input batch.
         
     | 
| 334 | 
         
            +
                    :param x: an [N x C x ...] Tensor of inputs.
         
     | 
| 335 | 
         
            +
                    :param timesteps: a 1-D batch of timesteps.
         
     | 
| 336 | 
         
            +
                    :param context: conditioning plugged in via crossattn
         
     | 
| 337 | 
         
            +
                    :param y: an [N] Tensor of labels, if class-conditional.
         
     | 
| 338 | 
         
            +
                    :return: an [N x C x ...] Tensor of outputs.
         
     | 
| 339 | 
         
            +
                    """
         
     | 
| 340 | 
         
            +
                    assert (y is not None) == (
         
     | 
| 341 | 
         
            +
                        self.num_classes is not None
         
     | 
| 342 | 
         
            +
                    ), "must specify y if and only if the model is class-conditional"
         
     | 
| 343 | 
         
            +
                    hs = []
         
     | 
| 344 | 
         
            +
                    t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
         
     | 
| 345 | 
         
            +
                    emb = self.time_embed(t_emb)
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                    if self.num_classes is not None:
         
     | 
| 348 | 
         
            +
                        assert y.shape == (x.shape[0],)
         
     | 
| 349 | 
         
            +
                        emb = emb + self.label_emb(y)
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
                    # For text-to-audio using global CLIP
         
     | 
| 352 | 
         
            +
                    if self.use_context_project:
         
     | 
| 353 | 
         
            +
                        context = self.context_project(context)
         
     | 
| 354 | 
         
            +
                    emb = emb + context.squeeze(1)
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                    h = x.type(self.dtype)
         
     | 
| 357 | 
         
            +
                    for module in self.input_blocks:
         
     | 
| 358 | 
         
            +
                        h = module(h, emb, context if self.use_context_attn else None)
         
     | 
| 359 | 
         
            +
                        hs.append(h)
         
     | 
| 360 | 
         
            +
                    h = self.middle_block(h, emb, context if self.use_context_attn else None)
         
     | 
| 361 | 
         
            +
                    for module in self.output_blocks:
         
     | 
| 362 | 
         
            +
                        h = th.cat([h, hs.pop()], dim=1)
         
     | 
| 363 | 
         
            +
                        h = module(h, emb, context if self.use_context_attn else None)
         
     | 
| 364 | 
         
            +
                    h = h.type(x.dtype)
         
     | 
| 365 | 
         
            +
                    if self.predict_codebook_ids:
         
     | 
| 366 | 
         
            +
                        return self.id_predictor(h)
         
     | 
| 367 | 
         
            +
                    else:
         
     | 
| 368 | 
         
            +
                        return self.out(h)
         
     | 
    	
        ldm/modules/diffusionmodules/model.py
    ADDED
    
    | 
         @@ -0,0 +1,835 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # pytorch_diffusion + derived encoder decoder
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import torch.nn as nn
         
     | 
| 5 | 
         
            +
            import numpy as np
         
     | 
| 6 | 
         
            +
            from einops import rearrange
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from ldm.util import instantiate_from_config
         
     | 
| 9 | 
         
            +
            from ldm.modules.attention import LinearAttention
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            def get_timestep_embedding(timesteps, embedding_dim):
         
     | 
| 13 | 
         
            +
                """
         
     | 
| 14 | 
         
            +
                This matches the implementation in Denoising Diffusion Probabilistic Models:
         
     | 
| 15 | 
         
            +
                From Fairseq.
         
     | 
| 16 | 
         
            +
                Build sinusoidal embeddings.
         
     | 
| 17 | 
         
            +
                This matches the implementation in tensor2tensor, but differs slightly
         
     | 
| 18 | 
         
            +
                from the description in Section 3.5 of "Attention Is All You Need".
         
     | 
| 19 | 
         
            +
                """
         
     | 
| 20 | 
         
            +
                assert len(timesteps.shape) == 1
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                half_dim = embedding_dim // 2
         
     | 
| 23 | 
         
            +
                emb = math.log(10000) / (half_dim - 1)
         
     | 
| 24 | 
         
            +
                emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
         
     | 
| 25 | 
         
            +
                emb = emb.to(device=timesteps.device)
         
     | 
| 26 | 
         
            +
                emb = timesteps.float()[:, None] * emb[None, :]
         
     | 
| 27 | 
         
            +
                emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
         
     | 
| 28 | 
         
            +
                if embedding_dim % 2 == 1:  # zero pad
         
     | 
| 29 | 
         
            +
                    emb = torch.nn.functional.pad(emb, (0,1,0,0))
         
     | 
| 30 | 
         
            +
                return emb
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            def nonlinearity(x):
         
     | 
| 34 | 
         
            +
                # swish
         
     | 
| 35 | 
         
            +
                return x*torch.sigmoid(x)
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            def Normalize(in_channels, num_groups=32):
         
     | 
| 39 | 
         
            +
                return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            class Upsample(nn.Module):
         
     | 
| 43 | 
         
            +
                def __init__(self, in_channels, with_conv):
         
     | 
| 44 | 
         
            +
                    super().__init__()
         
     | 
| 45 | 
         
            +
                    self.with_conv = with_conv
         
     | 
| 46 | 
         
            +
                    if self.with_conv:
         
     | 
| 47 | 
         
            +
                        self.conv = torch.nn.Conv2d(in_channels,
         
     | 
| 48 | 
         
            +
                                                    in_channels,
         
     | 
| 49 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 50 | 
         
            +
                                                    stride=1,
         
     | 
| 51 | 
         
            +
                                                    padding=1)
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                def forward(self, x):
         
     | 
| 54 | 
         
            +
                    x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
         
     | 
| 55 | 
         
            +
                    if self.with_conv:
         
     | 
| 56 | 
         
            +
                        x = self.conv(x)
         
     | 
| 57 | 
         
            +
                    return x
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            class Downsample(nn.Module):
         
     | 
| 61 | 
         
            +
                def __init__(self, in_channels, with_conv):
         
     | 
| 62 | 
         
            +
                    super().__init__()
         
     | 
| 63 | 
         
            +
                    self.with_conv = with_conv
         
     | 
| 64 | 
         
            +
                    if self.with_conv:
         
     | 
| 65 | 
         
            +
                        # no asymmetric padding in torch conv, must do it ourselves
         
     | 
| 66 | 
         
            +
                        self.conv = torch.nn.Conv2d(in_channels,
         
     | 
| 67 | 
         
            +
                                                    in_channels,
         
     | 
| 68 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 69 | 
         
            +
                                                    stride=2,
         
     | 
| 70 | 
         
            +
                                                    padding=0)
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                def forward(self, x):
         
     | 
| 73 | 
         
            +
                    if self.with_conv:
         
     | 
| 74 | 
         
            +
                        pad = (0,1,0,1)
         
     | 
| 75 | 
         
            +
                        x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
         
     | 
| 76 | 
         
            +
                        x = self.conv(x)
         
     | 
| 77 | 
         
            +
                    else:
         
     | 
| 78 | 
         
            +
                        x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
         
     | 
| 79 | 
         
            +
                    return x
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            class ResnetBlock(nn.Module):
         
     | 
| 83 | 
         
            +
                def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
         
     | 
| 84 | 
         
            +
                             dropout, temb_channels=512):
         
     | 
| 85 | 
         
            +
                    super().__init__()
         
     | 
| 86 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 87 | 
         
            +
                    out_channels = in_channels if out_channels is None else out_channels
         
     | 
| 88 | 
         
            +
                    self.out_channels = out_channels
         
     | 
| 89 | 
         
            +
                    self.use_conv_shortcut = conv_shortcut
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                    self.norm1 = Normalize(in_channels)
         
     | 
| 92 | 
         
            +
                    self.conv1 = torch.nn.Conv2d(in_channels,
         
     | 
| 93 | 
         
            +
                                                 out_channels,
         
     | 
| 94 | 
         
            +
                                                 kernel_size=3,
         
     | 
| 95 | 
         
            +
                                                 stride=1,
         
     | 
| 96 | 
         
            +
                                                 padding=1)
         
     | 
| 97 | 
         
            +
                    if temb_channels > 0:
         
     | 
| 98 | 
         
            +
                        self.temb_proj = torch.nn.Linear(temb_channels,
         
     | 
| 99 | 
         
            +
                                                         out_channels)
         
     | 
| 100 | 
         
            +
                    self.norm2 = Normalize(out_channels)
         
     | 
| 101 | 
         
            +
                    self.dropout = torch.nn.Dropout(dropout)
         
     | 
| 102 | 
         
            +
                    self.conv2 = torch.nn.Conv2d(out_channels,
         
     | 
| 103 | 
         
            +
                                                 out_channels,
         
     | 
| 104 | 
         
            +
                                                 kernel_size=3,
         
     | 
| 105 | 
         
            +
                                                 stride=1,
         
     | 
| 106 | 
         
            +
                                                 padding=1)
         
     | 
| 107 | 
         
            +
                    if self.in_channels != self.out_channels:
         
     | 
| 108 | 
         
            +
                        if self.use_conv_shortcut:
         
     | 
| 109 | 
         
            +
                            self.conv_shortcut = torch.nn.Conv2d(in_channels,
         
     | 
| 110 | 
         
            +
                                                                 out_channels,
         
     | 
| 111 | 
         
            +
                                                                 kernel_size=3,
         
     | 
| 112 | 
         
            +
                                                                 stride=1,
         
     | 
| 113 | 
         
            +
                                                                 padding=1)
         
     | 
| 114 | 
         
            +
                        else:
         
     | 
| 115 | 
         
            +
                            self.nin_shortcut = torch.nn.Conv2d(in_channels,
         
     | 
| 116 | 
         
            +
                                                                out_channels,
         
     | 
| 117 | 
         
            +
                                                                kernel_size=1,
         
     | 
| 118 | 
         
            +
                                                                stride=1,
         
     | 
| 119 | 
         
            +
                                                                padding=0)
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                def forward(self, x, temb):
         
     | 
| 122 | 
         
            +
                    h = x
         
     | 
| 123 | 
         
            +
                    h = self.norm1(h)
         
     | 
| 124 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 125 | 
         
            +
                    h = self.conv1(h)
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
                    if temb is not None:
         
     | 
| 128 | 
         
            +
                        h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                    h = self.norm2(h)
         
     | 
| 131 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 132 | 
         
            +
                    h = self.dropout(h)
         
     | 
| 133 | 
         
            +
                    h = self.conv2(h)
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                    if self.in_channels != self.out_channels:
         
     | 
| 136 | 
         
            +
                        if self.use_conv_shortcut:
         
     | 
| 137 | 
         
            +
                            x = self.conv_shortcut(x)
         
     | 
| 138 | 
         
            +
                        else:
         
     | 
| 139 | 
         
            +
                            x = self.nin_shortcut(x)
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    return x+h
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
            class LinAttnBlock(LinearAttention):
         
     | 
| 145 | 
         
            +
                """to match AttnBlock usage"""
         
     | 
| 146 | 
         
            +
                def __init__(self, in_channels):
         
     | 
| 147 | 
         
            +
                    super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
            class AttnBlock(nn.Module):
         
     | 
| 151 | 
         
            +
                def __init__(self, in_channels):
         
     | 
| 152 | 
         
            +
                    super().__init__()
         
     | 
| 153 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                    self.norm = Normalize(in_channels)
         
     | 
| 156 | 
         
            +
                    self.q = torch.nn.Conv2d(in_channels,
         
     | 
| 157 | 
         
            +
                                             in_channels,
         
     | 
| 158 | 
         
            +
                                             kernel_size=1,
         
     | 
| 159 | 
         
            +
                                             stride=1,
         
     | 
| 160 | 
         
            +
                                             padding=0)
         
     | 
| 161 | 
         
            +
                    self.k = torch.nn.Conv2d(in_channels,
         
     | 
| 162 | 
         
            +
                                             in_channels,
         
     | 
| 163 | 
         
            +
                                             kernel_size=1,
         
     | 
| 164 | 
         
            +
                                             stride=1,
         
     | 
| 165 | 
         
            +
                                             padding=0)
         
     | 
| 166 | 
         
            +
                    self.v = torch.nn.Conv2d(in_channels,
         
     | 
| 167 | 
         
            +
                                             in_channels,
         
     | 
| 168 | 
         
            +
                                             kernel_size=1,
         
     | 
| 169 | 
         
            +
                                             stride=1,
         
     | 
| 170 | 
         
            +
                                             padding=0)
         
     | 
| 171 | 
         
            +
                    self.proj_out = torch.nn.Conv2d(in_channels,
         
     | 
| 172 | 
         
            +
                                                    in_channels,
         
     | 
| 173 | 
         
            +
                                                    kernel_size=1,
         
     | 
| 174 | 
         
            +
                                                    stride=1,
         
     | 
| 175 | 
         
            +
                                                    padding=0)
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                def forward(self, x):
         
     | 
| 179 | 
         
            +
                    h_ = x
         
     | 
| 180 | 
         
            +
                    h_ = self.norm(h_)
         
     | 
| 181 | 
         
            +
                    q = self.q(h_)
         
     | 
| 182 | 
         
            +
                    k = self.k(h_)
         
     | 
| 183 | 
         
            +
                    v = self.v(h_)
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                    # compute attention
         
     | 
| 186 | 
         
            +
                    b,c,h,w = q.shape
         
     | 
| 187 | 
         
            +
                    q = q.reshape(b,c,h*w)
         
     | 
| 188 | 
         
            +
                    q = q.permute(0,2,1)   # b,hw,c
         
     | 
| 189 | 
         
            +
                    k = k.reshape(b,c,h*w) # b,c,hw
         
     | 
| 190 | 
         
            +
                    w_ = torch.bmm(q,k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
         
     | 
| 191 | 
         
            +
                    w_ = w_ * (int(c)**(-0.5))
         
     | 
| 192 | 
         
            +
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                    # attend to values
         
     | 
| 195 | 
         
            +
                    v = v.reshape(b,c,h*w)
         
     | 
| 196 | 
         
            +
                    w_ = w_.permute(0,2,1)   # b,hw,hw (first hw of k, second of q)
         
     | 
| 197 | 
         
            +
                    h_ = torch.bmm(v,w_)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
         
     | 
| 198 | 
         
            +
                    h_ = h_.reshape(b,c,h,w)
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                    h_ = self.proj_out(h_)
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                    return x+h_
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
            def make_attn(in_channels, attn_type="vanilla"):
         
     | 
| 206 | 
         
            +
                assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
         
     | 
| 207 | 
         
            +
                print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
         
     | 
| 208 | 
         
            +
                if attn_type == "vanilla":
         
     | 
| 209 | 
         
            +
                    return AttnBlock(in_channels)
         
     | 
| 210 | 
         
            +
                elif attn_type == "none":
         
     | 
| 211 | 
         
            +
                    return nn.Identity(in_channels)
         
     | 
| 212 | 
         
            +
                else:
         
     | 
| 213 | 
         
            +
                    return LinAttnBlock(in_channels)
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
            class Model(nn.Module):
         
     | 
| 217 | 
         
            +
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 218 | 
         
            +
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 219 | 
         
            +
                             resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
         
     | 
| 220 | 
         
            +
                    super().__init__()
         
     | 
| 221 | 
         
            +
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 222 | 
         
            +
                    self.ch = ch
         
     | 
| 223 | 
         
            +
                    self.temb_ch = self.ch*4
         
     | 
| 224 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 225 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 226 | 
         
            +
                    self.resolution = resolution
         
     | 
| 227 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                    self.use_timestep = use_timestep
         
     | 
| 230 | 
         
            +
                    if self.use_timestep:
         
     | 
| 231 | 
         
            +
                        # timestep embedding
         
     | 
| 232 | 
         
            +
                        self.temb = nn.Module()
         
     | 
| 233 | 
         
            +
                        self.temb.dense = nn.ModuleList([
         
     | 
| 234 | 
         
            +
                            torch.nn.Linear(self.ch,
         
     | 
| 235 | 
         
            +
                                            self.temb_ch),
         
     | 
| 236 | 
         
            +
                            torch.nn.Linear(self.temb_ch,
         
     | 
| 237 | 
         
            +
                                            self.temb_ch),
         
     | 
| 238 | 
         
            +
                        ])
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                    # downsampling
         
     | 
| 241 | 
         
            +
                    self.conv_in = torch.nn.Conv2d(in_channels,
         
     | 
| 242 | 
         
            +
                                                   self.ch,
         
     | 
| 243 | 
         
            +
                                                   kernel_size=3,
         
     | 
| 244 | 
         
            +
                                                   stride=1,
         
     | 
| 245 | 
         
            +
                                                   padding=1)
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                    curr_res = resolution
         
     | 
| 248 | 
         
            +
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 249 | 
         
            +
                    self.down = nn.ModuleList()
         
     | 
| 250 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 251 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 252 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 253 | 
         
            +
                        block_in = ch*in_ch_mult[i_level]
         
     | 
| 254 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 255 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 256 | 
         
            +
                            block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 257 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 258 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 259 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 260 | 
         
            +
                            block_in = block_out
         
     | 
| 261 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 262 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 263 | 
         
            +
                        down = nn.Module()
         
     | 
| 264 | 
         
            +
                        down.block = block
         
     | 
| 265 | 
         
            +
                        down.attn = attn
         
     | 
| 266 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 267 | 
         
            +
                            down.downsample = Downsample(block_in, resamp_with_conv)
         
     | 
| 268 | 
         
            +
                            curr_res = curr_res // 2
         
     | 
| 269 | 
         
            +
                        self.down.append(down)
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                    # middle
         
     | 
| 272 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 273 | 
         
            +
                    self.mid.block_1 = ResnetBlock(in_channels=block_in,
         
     | 
| 274 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 275 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 276 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 277 | 
         
            +
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 278 | 
         
            +
                    self.mid.block_2 = ResnetBlock(in_channels=block_in,
         
     | 
| 279 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 280 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 281 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                    # upsampling
         
     | 
| 284 | 
         
            +
                    self.up = nn.ModuleList()
         
     | 
| 285 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 286 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 287 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 288 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 289 | 
         
            +
                        skip_in = ch*ch_mult[i_level]
         
     | 
| 290 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 291 | 
         
            +
                            if i_block == self.num_res_blocks:
         
     | 
| 292 | 
         
            +
                                skip_in = ch*in_ch_mult[i_level]
         
     | 
| 293 | 
         
            +
                            block.append(ResnetBlock(in_channels=block_in+skip_in,
         
     | 
| 294 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 295 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 296 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 297 | 
         
            +
                            block_in = block_out
         
     | 
| 298 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 299 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 300 | 
         
            +
                        up = nn.Module()
         
     | 
| 301 | 
         
            +
                        up.block = block
         
     | 
| 302 | 
         
            +
                        up.attn = attn
         
     | 
| 303 | 
         
            +
                        if i_level != 0:
         
     | 
| 304 | 
         
            +
                            up.upsample = Upsample(block_in, resamp_with_conv)
         
     | 
| 305 | 
         
            +
                            curr_res = curr_res * 2
         
     | 
| 306 | 
         
            +
                        self.up.insert(0, up) # prepend to get consistent order
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
                    # end
         
     | 
| 309 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 310 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 311 | 
         
            +
                                                    out_ch,
         
     | 
| 312 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 313 | 
         
            +
                                                    stride=1,
         
     | 
| 314 | 
         
            +
                                                    padding=1)
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                def forward(self, x, t=None, context=None):
         
     | 
| 317 | 
         
            +
                    #assert x.shape[2] == x.shape[3] == self.resolution
         
     | 
| 318 | 
         
            +
                    if context is not None:
         
     | 
| 319 | 
         
            +
                        # assume aligned context, cat along channel axis
         
     | 
| 320 | 
         
            +
                        x = torch.cat((x, context), dim=1)
         
     | 
| 321 | 
         
            +
                    if self.use_timestep:
         
     | 
| 322 | 
         
            +
                        # timestep embedding
         
     | 
| 323 | 
         
            +
                        assert t is not None
         
     | 
| 324 | 
         
            +
                        temb = get_timestep_embedding(t, self.ch)
         
     | 
| 325 | 
         
            +
                        temb = self.temb.dense[0](temb)
         
     | 
| 326 | 
         
            +
                        temb = nonlinearity(temb)
         
     | 
| 327 | 
         
            +
                        temb = self.temb.dense[1](temb)
         
     | 
| 328 | 
         
            +
                    else:
         
     | 
| 329 | 
         
            +
                        temb = None
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                    # downsampling
         
     | 
| 332 | 
         
            +
                    hs = [self.conv_in(x)]
         
     | 
| 333 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 334 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 335 | 
         
            +
                            h = self.down[i_level].block[i_block](hs[-1], temb)
         
     | 
| 336 | 
         
            +
                            if len(self.down[i_level].attn) > 0:
         
     | 
| 337 | 
         
            +
                                h = self.down[i_level].attn[i_block](h)
         
     | 
| 338 | 
         
            +
                            hs.append(h)
         
     | 
| 339 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 340 | 
         
            +
                            hs.append(self.down[i_level].downsample(hs[-1]))
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                    # middle
         
     | 
| 343 | 
         
            +
                    h = hs[-1]
         
     | 
| 344 | 
         
            +
                    h = self.mid.block_1(h, temb)
         
     | 
| 345 | 
         
            +
                    h = self.mid.attn_1(h)
         
     | 
| 346 | 
         
            +
                    h = self.mid.block_2(h, temb)
         
     | 
| 347 | 
         
            +
             
     | 
| 348 | 
         
            +
                    # upsampling
         
     | 
| 349 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 350 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 351 | 
         
            +
                            h = self.up[i_level].block[i_block](
         
     | 
| 352 | 
         
            +
                                torch.cat([h, hs.pop()], dim=1), temb)
         
     | 
| 353 | 
         
            +
                            if len(self.up[i_level].attn) > 0:
         
     | 
| 354 | 
         
            +
                                h = self.up[i_level].attn[i_block](h)
         
     | 
| 355 | 
         
            +
                        if i_level != 0:
         
     | 
| 356 | 
         
            +
                            h = self.up[i_level].upsample(h)
         
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
                    # end
         
     | 
| 359 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 360 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 361 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 362 | 
         
            +
                    return h
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                def get_last_layer(self):
         
     | 
| 365 | 
         
            +
                    return self.conv_out.weight
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
            class Encoder(nn.Module):
         
     | 
| 369 | 
         
            +
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 370 | 
         
            +
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 371 | 
         
            +
                             resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
         
     | 
| 372 | 
         
            +
                             **ignore_kwargs):
         
     | 
| 373 | 
         
            +
                    super().__init__()
         
     | 
| 374 | 
         
            +
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 375 | 
         
            +
                    self.ch = ch
         
     | 
| 376 | 
         
            +
                    self.temb_ch = 0
         
     | 
| 377 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 378 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 379 | 
         
            +
                    self.resolution = resolution
         
     | 
| 380 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                    # downsampling
         
     | 
| 383 | 
         
            +
                    self.conv_in = torch.nn.Conv2d(in_channels,
         
     | 
| 384 | 
         
            +
                                                   self.ch,
         
     | 
| 385 | 
         
            +
                                                   kernel_size=3,
         
     | 
| 386 | 
         
            +
                                                   stride=1,
         
     | 
| 387 | 
         
            +
                                                   padding=1)
         
     | 
| 388 | 
         
            +
             
     | 
| 389 | 
         
            +
                    curr_res = resolution
         
     | 
| 390 | 
         
            +
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 391 | 
         
            +
                    self.in_ch_mult = in_ch_mult
         
     | 
| 392 | 
         
            +
                    self.down = nn.ModuleList()
         
     | 
| 393 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 394 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 395 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 396 | 
         
            +
                        block_in = ch*in_ch_mult[i_level]
         
     | 
| 397 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 398 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 399 | 
         
            +
                            block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 400 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 401 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 402 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 403 | 
         
            +
                            block_in = block_out
         
     | 
| 404 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 405 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))# vanilla attention
         
     | 
| 406 | 
         
            +
                        down = nn.Module()
         
     | 
| 407 | 
         
            +
                        down.block = block
         
     | 
| 408 | 
         
            +
                        down.attn = attn
         
     | 
| 409 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 410 | 
         
            +
                            down.downsample = Downsample(block_in, resamp_with_conv)
         
     | 
| 411 | 
         
            +
                            curr_res = curr_res // 2
         
     | 
| 412 | 
         
            +
                        self.down.append(down)
         
     | 
| 413 | 
         
            +
             
     | 
| 414 | 
         
            +
                    # middle
         
     | 
| 415 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 416 | 
         
            +
                    self.mid.block_1 = ResnetBlock(in_channels=block_in,
         
     | 
| 417 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 418 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 419 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 420 | 
         
            +
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 421 | 
         
            +
                    self.mid.block_2 = ResnetBlock(in_channels=block_in,
         
     | 
| 422 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 423 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 424 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 425 | 
         
            +
             
     | 
| 426 | 
         
            +
                    # end
         
     | 
| 427 | 
         
            +
                    self.norm_out = Normalize(block_in)# GroupNorm
         
     | 
| 428 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 429 | 
         
            +
                                                    2*z_channels if double_z else z_channels,
         
     | 
| 430 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 431 | 
         
            +
                                                    stride=1,
         
     | 
| 432 | 
         
            +
                                                    padding=1)
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
                def forward(self, x):
         
     | 
| 435 | 
         
            +
                    # timestep embedding
         
     | 
| 436 | 
         
            +
                    temb = None
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                    # downsampling
         
     | 
| 439 | 
         
            +
                    hs = [self.conv_in(x)]
         
     | 
| 440 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 441 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 442 | 
         
            +
                            h = self.down[i_level].block[i_block](hs[-1], temb)
         
     | 
| 443 | 
         
            +
                            if len(self.down[i_level].attn) > 0:
         
     | 
| 444 | 
         
            +
                                h = self.down[i_level].attn[i_block](h)
         
     | 
| 445 | 
         
            +
                            hs.append(h)
         
     | 
| 446 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 447 | 
         
            +
                            hs.append(self.down[i_level].downsample(hs[-1]))
         
     | 
| 448 | 
         
            +
             
     | 
| 449 | 
         
            +
                    # middle
         
     | 
| 450 | 
         
            +
                    h = hs[-1]
         
     | 
| 451 | 
         
            +
                    h = self.mid.block_1(h, temb)
         
     | 
| 452 | 
         
            +
                    h = self.mid.attn_1(h)
         
     | 
| 453 | 
         
            +
                    h = self.mid.block_2(h, temb)
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
                    # end
         
     | 
| 456 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 457 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 458 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 459 | 
         
            +
                    return h
         
     | 
| 460 | 
         
            +
             
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
            class Decoder(nn.Module):
         
     | 
| 463 | 
         
            +
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 464 | 
         
            +
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 465 | 
         
            +
                             resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
         
     | 
| 466 | 
         
            +
                             attn_type="vanilla", **ignorekwargs):
         
     | 
| 467 | 
         
            +
                    super().__init__()
         
     | 
| 468 | 
         
            +
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 469 | 
         
            +
                    self.ch = ch
         
     | 
| 470 | 
         
            +
                    self.temb_ch = 0
         
     | 
| 471 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 472 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 473 | 
         
            +
                    self.resolution = resolution
         
     | 
| 474 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 475 | 
         
            +
                    self.give_pre_end = give_pre_end
         
     | 
| 476 | 
         
            +
                    self.tanh_out = tanh_out
         
     | 
| 477 | 
         
            +
             
     | 
| 478 | 
         
            +
                    # compute in_ch_mult, block_in and curr_res at lowest res
         
     | 
| 479 | 
         
            +
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 480 | 
         
            +
                    block_in = ch*ch_mult[self.num_resolutions-1]
         
     | 
| 481 | 
         
            +
                    curr_res = resolution // 2**(self.num_resolutions-1)
         
     | 
| 482 | 
         
            +
                    self.z_shape = (1,z_channels,curr_res,curr_res)
         
     | 
| 483 | 
         
            +
                    print("Working with z of shape {} = {} dimensions.".format(
         
     | 
| 484 | 
         
            +
                        self.z_shape, np.prod(self.z_shape)))
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
                    # z to block_in
         
     | 
| 487 | 
         
            +
                    self.conv_in = torch.nn.Conv2d(z_channels,
         
     | 
| 488 | 
         
            +
                                                   block_in,
         
     | 
| 489 | 
         
            +
                                                   kernel_size=3,
         
     | 
| 490 | 
         
            +
                                                   stride=1,
         
     | 
| 491 | 
         
            +
                                                   padding=1)
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                    # middle
         
     | 
| 494 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 495 | 
         
            +
                    self.mid.block_1 = ResnetBlock(in_channels=block_in,
         
     | 
| 496 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 497 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 498 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 499 | 
         
            +
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 500 | 
         
            +
                    self.mid.block_2 = ResnetBlock(in_channels=block_in,
         
     | 
| 501 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 502 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 503 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 504 | 
         
            +
             
     | 
| 505 | 
         
            +
                    # upsampling
         
     | 
| 506 | 
         
            +
                    self.up = nn.ModuleList()
         
     | 
| 507 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 508 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 509 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 510 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 511 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 512 | 
         
            +
                            block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 513 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 514 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 515 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 516 | 
         
            +
                            block_in = block_out
         
     | 
| 517 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 518 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 519 | 
         
            +
                        up = nn.Module()
         
     | 
| 520 | 
         
            +
                        up.block = block
         
     | 
| 521 | 
         
            +
                        up.attn = attn
         
     | 
| 522 | 
         
            +
                        if i_level != 0:
         
     | 
| 523 | 
         
            +
                            up.upsample = Upsample(block_in, resamp_with_conv)
         
     | 
| 524 | 
         
            +
                            curr_res = curr_res * 2
         
     | 
| 525 | 
         
            +
                        self.up.insert(0, up) # prepend to get consistent order
         
     | 
| 526 | 
         
            +
             
     | 
| 527 | 
         
            +
                    # end
         
     | 
| 528 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 529 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 530 | 
         
            +
                                                    out_ch,
         
     | 
| 531 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 532 | 
         
            +
                                                    stride=1,
         
     | 
| 533 | 
         
            +
                                                    padding=1)
         
     | 
| 534 | 
         
            +
             
     | 
| 535 | 
         
            +
                def forward(self, z):
         
     | 
| 536 | 
         
            +
                    #assert z.shape[1:] == self.z_shape[1:]
         
     | 
| 537 | 
         
            +
                    self.last_z_shape = z.shape
         
     | 
| 538 | 
         
            +
             
     | 
| 539 | 
         
            +
                    # timestep embedding
         
     | 
| 540 | 
         
            +
                    temb = None
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
                    # z to block_in
         
     | 
| 543 | 
         
            +
                    h = self.conv_in(z)
         
     | 
| 544 | 
         
            +
             
     | 
| 545 | 
         
            +
                    # middle
         
     | 
| 546 | 
         
            +
                    h = self.mid.block_1(h, temb)
         
     | 
| 547 | 
         
            +
                    h = self.mid.attn_1(h)
         
     | 
| 548 | 
         
            +
                    h = self.mid.block_2(h, temb)
         
     | 
| 549 | 
         
            +
             
     | 
| 550 | 
         
            +
                    # upsampling
         
     | 
| 551 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 552 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 553 | 
         
            +
                            h = self.up[i_level].block[i_block](h, temb)
         
     | 
| 554 | 
         
            +
                            if len(self.up[i_level].attn) > 0:
         
     | 
| 555 | 
         
            +
                                h = self.up[i_level].attn[i_block](h)
         
     | 
| 556 | 
         
            +
                        if i_level != 0:
         
     | 
| 557 | 
         
            +
                            h = self.up[i_level].upsample(h)
         
     | 
| 558 | 
         
            +
             
     | 
| 559 | 
         
            +
                    # end
         
     | 
| 560 | 
         
            +
                    if self.give_pre_end:
         
     | 
| 561 | 
         
            +
                        return h
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 564 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 565 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 566 | 
         
            +
                    if self.tanh_out:
         
     | 
| 567 | 
         
            +
                        h = torch.tanh(h)
         
     | 
| 568 | 
         
            +
                    return h
         
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
             
     | 
| 571 | 
         
            +
            class SimpleDecoder(nn.Module):
         
     | 
| 572 | 
         
            +
                def __init__(self, in_channels, out_channels, *args, **kwargs):
         
     | 
| 573 | 
         
            +
                    super().__init__()
         
     | 
| 574 | 
         
            +
                    self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
         
     | 
| 575 | 
         
            +
                                                 ResnetBlock(in_channels=in_channels,
         
     | 
| 576 | 
         
            +
                                                             out_channels=2 * in_channels,
         
     | 
| 577 | 
         
            +
                                                             temb_channels=0, dropout=0.0),
         
     | 
| 578 | 
         
            +
                                                 ResnetBlock(in_channels=2 * in_channels,
         
     | 
| 579 | 
         
            +
                                                            out_channels=4 * in_channels,
         
     | 
| 580 | 
         
            +
                                                            temb_channels=0, dropout=0.0),
         
     | 
| 581 | 
         
            +
                                                 ResnetBlock(in_channels=4 * in_channels,
         
     | 
| 582 | 
         
            +
                                                            out_channels=2 * in_channels,
         
     | 
| 583 | 
         
            +
                                                            temb_channels=0, dropout=0.0),
         
     | 
| 584 | 
         
            +
                                                 nn.Conv2d(2*in_channels, in_channels, 1),
         
     | 
| 585 | 
         
            +
                                                 Upsample(in_channels, with_conv=True)])
         
     | 
| 586 | 
         
            +
                    # end
         
     | 
| 587 | 
         
            +
                    self.norm_out = Normalize(in_channels)
         
     | 
| 588 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(in_channels,
         
     | 
| 589 | 
         
            +
                                                    out_channels,
         
     | 
| 590 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 591 | 
         
            +
                                                    stride=1,
         
     | 
| 592 | 
         
            +
                                                    padding=1)
         
     | 
| 593 | 
         
            +
             
     | 
| 594 | 
         
            +
                def forward(self, x):
         
     | 
| 595 | 
         
            +
                    for i, layer in enumerate(self.model):
         
     | 
| 596 | 
         
            +
                        if i in [1,2,3]:
         
     | 
| 597 | 
         
            +
                            x = layer(x, None)
         
     | 
| 598 | 
         
            +
                        else:
         
     | 
| 599 | 
         
            +
                            x = layer(x)
         
     | 
| 600 | 
         
            +
             
     | 
| 601 | 
         
            +
                    h = self.norm_out(x)
         
     | 
| 602 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 603 | 
         
            +
                    x = self.conv_out(h)
         
     | 
| 604 | 
         
            +
                    return x
         
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
            class UpsampleDecoder(nn.Module):
         
     | 
| 608 | 
         
            +
                def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
         
     | 
| 609 | 
         
            +
                             ch_mult=(2,2), dropout=0.0):
         
     | 
| 610 | 
         
            +
                    super().__init__()
         
     | 
| 611 | 
         
            +
                    # upsampling
         
     | 
| 612 | 
         
            +
                    self.temb_ch = 0
         
     | 
| 613 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 614 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 615 | 
         
            +
                    block_in = in_channels
         
     | 
| 616 | 
         
            +
                    curr_res = resolution // 2 ** (self.num_resolutions - 1)
         
     | 
| 617 | 
         
            +
                    self.res_blocks = nn.ModuleList()
         
     | 
| 618 | 
         
            +
                    self.upsample_blocks = nn.ModuleList()
         
     | 
| 619 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 620 | 
         
            +
                        res_block = []
         
     | 
| 621 | 
         
            +
                        block_out = ch * ch_mult[i_level]
         
     | 
| 622 | 
         
            +
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 623 | 
         
            +
                            res_block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 624 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 625 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 626 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 627 | 
         
            +
                            block_in = block_out
         
     | 
| 628 | 
         
            +
                        self.res_blocks.append(nn.ModuleList(res_block))
         
     | 
| 629 | 
         
            +
                        if i_level != self.num_resolutions - 1:
         
     | 
| 630 | 
         
            +
                            self.upsample_blocks.append(Upsample(block_in, True))
         
     | 
| 631 | 
         
            +
                            curr_res = curr_res * 2
         
     | 
| 632 | 
         
            +
             
     | 
| 633 | 
         
            +
                    # end
         
     | 
| 634 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 635 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 636 | 
         
            +
                                                    out_channels,
         
     | 
| 637 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 638 | 
         
            +
                                                    stride=1,
         
     | 
| 639 | 
         
            +
                                                    padding=1)
         
     | 
| 640 | 
         
            +
             
     | 
| 641 | 
         
            +
                def forward(self, x):
         
     | 
| 642 | 
         
            +
                    # upsampling
         
     | 
| 643 | 
         
            +
                    h = x
         
     | 
| 644 | 
         
            +
                    for k, i_level in enumerate(range(self.num_resolutions)):
         
     | 
| 645 | 
         
            +
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 646 | 
         
            +
                            h = self.res_blocks[i_level][i_block](h, None)
         
     | 
| 647 | 
         
            +
                        if i_level != self.num_resolutions - 1:
         
     | 
| 648 | 
         
            +
                            h = self.upsample_blocks[k](h)
         
     | 
| 649 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 650 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 651 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 652 | 
         
            +
                    return h
         
     | 
| 653 | 
         
            +
             
     | 
| 654 | 
         
            +
             
     | 
| 655 | 
         
            +
            class LatentRescaler(nn.Module):
         
     | 
| 656 | 
         
            +
                def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
         
     | 
| 657 | 
         
            +
                    super().__init__()
         
     | 
| 658 | 
         
            +
                    # residual block, interpolate, residual block
         
     | 
| 659 | 
         
            +
                    self.factor = factor
         
     | 
| 660 | 
         
            +
                    self.conv_in = nn.Conv2d(in_channels,
         
     | 
| 661 | 
         
            +
                                             mid_channels,
         
     | 
| 662 | 
         
            +
                                             kernel_size=3,
         
     | 
| 663 | 
         
            +
                                             stride=1,
         
     | 
| 664 | 
         
            +
                                             padding=1)
         
     | 
| 665 | 
         
            +
                    self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
         
     | 
| 666 | 
         
            +
                                                                 out_channels=mid_channels,
         
     | 
| 667 | 
         
            +
                                                                 temb_channels=0,
         
     | 
| 668 | 
         
            +
                                                                 dropout=0.0) for _ in range(depth)])
         
     | 
| 669 | 
         
            +
                    self.attn = AttnBlock(mid_channels)
         
     | 
| 670 | 
         
            +
                    self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
         
     | 
| 671 | 
         
            +
                                                                 out_channels=mid_channels,
         
     | 
| 672 | 
         
            +
                                                                 temb_channels=0,
         
     | 
| 673 | 
         
            +
                                                                 dropout=0.0) for _ in range(depth)])
         
     | 
| 674 | 
         
            +
             
     | 
| 675 | 
         
            +
                    self.conv_out = nn.Conv2d(mid_channels,
         
     | 
| 676 | 
         
            +
                                              out_channels,
         
     | 
| 677 | 
         
            +
                                              kernel_size=1,
         
     | 
| 678 | 
         
            +
                                              )
         
     | 
| 679 | 
         
            +
             
     | 
| 680 | 
         
            +
                def forward(self, x):
         
     | 
| 681 | 
         
            +
                    x = self.conv_in(x)
         
     | 
| 682 | 
         
            +
                    for block in self.res_block1:
         
     | 
| 683 | 
         
            +
                        x = block(x, None)
         
     | 
| 684 | 
         
            +
                    x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
         
     | 
| 685 | 
         
            +
                    x = self.attn(x)
         
     | 
| 686 | 
         
            +
                    for block in self.res_block2:
         
     | 
| 687 | 
         
            +
                        x = block(x, None)
         
     | 
| 688 | 
         
            +
                    x = self.conv_out(x)
         
     | 
| 689 | 
         
            +
                    return x
         
     | 
| 690 | 
         
            +
             
     | 
| 691 | 
         
            +
             
     | 
| 692 | 
         
            +
            class MergedRescaleEncoder(nn.Module):
         
     | 
| 693 | 
         
            +
                def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
         
     | 
| 694 | 
         
            +
                             attn_resolutions, dropout=0.0, resamp_with_conv=True,
         
     | 
| 695 | 
         
            +
                             ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
         
     | 
| 696 | 
         
            +
                    super().__init__()
         
     | 
| 697 | 
         
            +
                    intermediate_chn = ch * ch_mult[-1]
         
     | 
| 698 | 
         
            +
                    self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
         
     | 
| 699 | 
         
            +
                                           z_channels=intermediate_chn, double_z=False, resolution=resolution,
         
     | 
| 700 | 
         
            +
                                           attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
         
     | 
| 701 | 
         
            +
                                           out_ch=None)
         
     | 
| 702 | 
         
            +
                    self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
         
     | 
| 703 | 
         
            +
                                                   mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
         
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
                def forward(self, x):
         
     | 
| 706 | 
         
            +
                    x = self.encoder(x)
         
     | 
| 707 | 
         
            +
                    x = self.rescaler(x)
         
     | 
| 708 | 
         
            +
                    return x
         
     | 
| 709 | 
         
            +
             
     | 
| 710 | 
         
            +
             
     | 
| 711 | 
         
            +
            class MergedRescaleDecoder(nn.Module):
         
     | 
| 712 | 
         
            +
                def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
         
     | 
| 713 | 
         
            +
                             dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
         
     | 
| 714 | 
         
            +
                    super().__init__()
         
     | 
| 715 | 
         
            +
                    tmp_chn = z_channels*ch_mult[-1]
         
     | 
| 716 | 
         
            +
                    self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
         
     | 
| 717 | 
         
            +
                                           resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
         
     | 
| 718 | 
         
            +
                                           ch_mult=ch_mult, resolution=resolution, ch=ch)
         
     | 
| 719 | 
         
            +
                    self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
         
     | 
| 720 | 
         
            +
                                                   out_channels=tmp_chn, depth=rescale_module_depth)
         
     | 
| 721 | 
         
            +
             
     | 
| 722 | 
         
            +
                def forward(self, x):
         
     | 
| 723 | 
         
            +
                    x = self.rescaler(x)
         
     | 
| 724 | 
         
            +
                    x = self.decoder(x)
         
     | 
| 725 | 
         
            +
                    return x
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
             
     | 
| 728 | 
         
            +
            class Upsampler(nn.Module):
         
     | 
| 729 | 
         
            +
                def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
         
     | 
| 730 | 
         
            +
                    super().__init__()
         
     | 
| 731 | 
         
            +
                    assert out_size >= in_size
         
     | 
| 732 | 
         
            +
                    num_blocks = int(np.log2(out_size//in_size))+1
         
     | 
| 733 | 
         
            +
                    factor_up = 1.+ (out_size % in_size)
         
     | 
| 734 | 
         
            +
                    print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
         
     | 
| 735 | 
         
            +
                    self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
         
     | 
| 736 | 
         
            +
                                                   out_channels=in_channels)
         
     | 
| 737 | 
         
            +
                    self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
         
     | 
| 738 | 
         
            +
                                           attn_resolutions=[], in_channels=None, ch=in_channels,
         
     | 
| 739 | 
         
            +
                                           ch_mult=[ch_mult for _ in range(num_blocks)])
         
     | 
| 740 | 
         
            +
             
     | 
| 741 | 
         
            +
                def forward(self, x):
         
     | 
| 742 | 
         
            +
                    x = self.rescaler(x)
         
     | 
| 743 | 
         
            +
                    x = self.decoder(x)
         
     | 
| 744 | 
         
            +
                    return x
         
     | 
| 745 | 
         
            +
             
     | 
| 746 | 
         
            +
             
     | 
| 747 | 
         
            +
            class Resize(nn.Module):
         
     | 
| 748 | 
         
            +
                def __init__(self, in_channels=None, learned=False, mode="bilinear"):
         
     | 
| 749 | 
         
            +
                    super().__init__()
         
     | 
| 750 | 
         
            +
                    self.with_conv = learned
         
     | 
| 751 | 
         
            +
                    self.mode = mode
         
     | 
| 752 | 
         
            +
                    if self.with_conv:
         
     | 
| 753 | 
         
            +
                        print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
         
     | 
| 754 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 755 | 
         
            +
                        assert in_channels is not None
         
     | 
| 756 | 
         
            +
                        # no asymmetric padding in torch conv, must do it ourselves
         
     | 
| 757 | 
         
            +
                        self.conv = torch.nn.Conv2d(in_channels,
         
     | 
| 758 | 
         
            +
                                                    in_channels,
         
     | 
| 759 | 
         
            +
                                                    kernel_size=4,
         
     | 
| 760 | 
         
            +
                                                    stride=2,
         
     | 
| 761 | 
         
            +
                                                    padding=1)
         
     | 
| 762 | 
         
            +
             
     | 
| 763 | 
         
            +
                def forward(self, x, scale_factor=1.0):
         
     | 
| 764 | 
         
            +
                    if scale_factor==1.0:
         
     | 
| 765 | 
         
            +
                        return x
         
     | 
| 766 | 
         
            +
                    else:
         
     | 
| 767 | 
         
            +
                        x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
         
     | 
| 768 | 
         
            +
                    return x
         
     | 
| 769 | 
         
            +
             
     | 
| 770 | 
         
            +
            class FirstStagePostProcessor(nn.Module):
         
     | 
| 771 | 
         
            +
             
     | 
| 772 | 
         
            +
                def __init__(self, ch_mult:list, in_channels,
         
     | 
| 773 | 
         
            +
                             pretrained_model:nn.Module=None,
         
     | 
| 774 | 
         
            +
                             reshape=False,
         
     | 
| 775 | 
         
            +
                             n_channels=None,
         
     | 
| 776 | 
         
            +
                             dropout=0.,
         
     | 
| 777 | 
         
            +
                             pretrained_config=None):
         
     | 
| 778 | 
         
            +
                    super().__init__()
         
     | 
| 779 | 
         
            +
                    if pretrained_config is None:
         
     | 
| 780 | 
         
            +
                        assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
         
     | 
| 781 | 
         
            +
                        self.pretrained_model = pretrained_model
         
     | 
| 782 | 
         
            +
                    else:
         
     | 
| 783 | 
         
            +
                        assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
         
     | 
| 784 | 
         
            +
                        self.instantiate_pretrained(pretrained_config)
         
     | 
| 785 | 
         
            +
             
     | 
| 786 | 
         
            +
                    self.do_reshape = reshape
         
     | 
| 787 | 
         
            +
             
     | 
| 788 | 
         
            +
                    if n_channels is None:
         
     | 
| 789 | 
         
            +
                        n_channels = self.pretrained_model.encoder.ch
         
     | 
| 790 | 
         
            +
             
     | 
| 791 | 
         
            +
                    self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
         
     | 
| 792 | 
         
            +
                    self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
         
     | 
| 793 | 
         
            +
                                        stride=1,padding=1)
         
     | 
| 794 | 
         
            +
             
     | 
| 795 | 
         
            +
                    blocks = []
         
     | 
| 796 | 
         
            +
                    downs = []
         
     | 
| 797 | 
         
            +
                    ch_in = n_channels
         
     | 
| 798 | 
         
            +
                    for m in ch_mult:
         
     | 
| 799 | 
         
            +
                        blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
         
     | 
| 800 | 
         
            +
                        ch_in = m * n_channels
         
     | 
| 801 | 
         
            +
                        downs.append(Downsample(ch_in, with_conv=False))
         
     | 
| 802 | 
         
            +
             
     | 
| 803 | 
         
            +
                    self.model = nn.ModuleList(blocks)
         
     | 
| 804 | 
         
            +
                    self.downsampler = nn.ModuleList(downs)
         
     | 
| 805 | 
         
            +
             
     | 
| 806 | 
         
            +
             
     | 
| 807 | 
         
            +
                def instantiate_pretrained(self, config):
         
     | 
| 808 | 
         
            +
                    model = instantiate_from_config(config)
         
     | 
| 809 | 
         
            +
                    self.pretrained_model = model.eval()
         
     | 
| 810 | 
         
            +
                    # self.pretrained_model.train = False
         
     | 
| 811 | 
         
            +
                    for param in self.pretrained_model.parameters():
         
     | 
| 812 | 
         
            +
                        param.requires_grad = False
         
     | 
| 813 | 
         
            +
             
     | 
| 814 | 
         
            +
             
     | 
| 815 | 
         
            +
                @torch.no_grad()
         
     | 
| 816 | 
         
            +
                def encode_with_pretrained(self,x):
         
     | 
| 817 | 
         
            +
                    c = self.pretrained_model.encode(x)
         
     | 
| 818 | 
         
            +
                    if isinstance(c, DiagonalGaussianDistribution):
         
     | 
| 819 | 
         
            +
                        c = c.mode()
         
     | 
| 820 | 
         
            +
                    return  c
         
     | 
| 821 | 
         
            +
             
     | 
| 822 | 
         
            +
                def forward(self,x):
         
     | 
| 823 | 
         
            +
                    z_fs = self.encode_with_pretrained(x)
         
     | 
| 824 | 
         
            +
                    z = self.proj_norm(z_fs)
         
     | 
| 825 | 
         
            +
                    z = self.proj(z)
         
     | 
| 826 | 
         
            +
                    z = nonlinearity(z)
         
     | 
| 827 | 
         
            +
             
     | 
| 828 | 
         
            +
                    for submodel, downmodel in zip(self.model,self.downsampler):
         
     | 
| 829 | 
         
            +
                        z = submodel(z,temb=None)
         
     | 
| 830 | 
         
            +
                        z = downmodel(z)
         
     | 
| 831 | 
         
            +
             
     | 
| 832 | 
         
            +
                    if self.do_reshape:
         
     | 
| 833 | 
         
            +
                        z = rearrange(z,'b c h w -> b (h w) c')
         
     | 
| 834 | 
         
            +
                    return z
         
     | 
| 835 | 
         
            +
             
     |