3v324v23's picture
Add code
a84a65c
raw
history blame
10.4 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
from typing import Optional, Tuple, List
import torch
import torch.nn as nn
import torch.nn.functional as F
import warnings
import math
try:
from flash_attn import flash_attn_func
is_flash_attn = True
except:
is_flash_attn = False
from flash_attn import flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
from einops import rearrange
from ldm.modules.diffusionmodules.flag_large_dit_moe import Attention, FeedForward, RMSNorm, modulate, TimestepEmbedder
#############################################################################
# Core DiT Model #
#############################################################################
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, dim: int, n_heads: int, n_kv_heads: int,
multiple_of: int, ffn_dim_multiplier: float, norm_eps: float,
qk_norm: bool, y_dim: int) -> None:
super().__init__()
self.dim = dim
self.head_dim = dim // n_heads
self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim)
self.feed_forward = FeedForward(
dim=dim, hidden_dim=4 * dim, multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(dim, eps=norm_eps)
self.ffn_norm = RMSNorm(dim, eps=norm_eps)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(
dim, 6 * dim, bias=True
),
)
self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
y: torch.Tensor,
y_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor] = None,
):
"""
Perform a forward pass through the TransformerBlock.
Args:
x (torch.Tensor): Input tensor.
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
mask (torch.Tensor, optional): Masking tensor for attention.
Defaults to None.
Returns:
torch.Tensor: Output tensor after applying attention and
feedforward layers.
"""
if adaln_input is not None:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = \
self.adaLN_modulation(adaln_input).chunk(6, dim=1)
h = x + gate_msa.unsqueeze(1) * self.attention(
modulate(self.attention_norm(x), shift_msa, scale_msa),
x_mask,
freqs_cis,
self.attention_y_norm(y), y_mask,
)
out = h + gate_mlp.unsqueeze(1) * self.feed_forward(
modulate(self.ffn_norm(h), shift_mlp, scale_mlp),
)
else:
h = x + self.attention(
self.attention_norm(x), x_mask, freqs_cis, self.attention_y_norm(y), y_mask,
)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6,
)
self.linear = nn.Linear(
hidden_size, out_channels, bias=True
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(
hidden_size, 2 * hidden_size, bias=True
),
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class TxtFlagLargeDiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
in_channels,
context_dim,
hidden_size=1152,
depth=28,
num_heads=16,
max_len = 1000,
n_kv_heads=None,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps=1e-5,
qk_norm=None,
rope_scaling_factor: float = 1.,
ntk_factor: float = 1.
):
super().__init__()
self.in_channels = in_channels # vae dim
self.out_channels = in_channels
self.num_heads = num_heads
self.t_embedder = TimestepEmbedder(hidden_size)
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
self.blocks = nn.ModuleList([
TransformerBlock(layer_id, hidden_size, num_heads, n_kv_heads, multiple_of,
ffn_dim_multiplier, norm_eps, qk_norm, context_dim)
for layer_id in range(depth)
])
self.freqs_cis = TxtFlagLargeDiT.precompute_freqs_cis(hidden_size // num_heads, max_len,
rope_scaling_factor=rope_scaling_factor, ntk_factor=ntk_factor)
self.final_layer = FinalLayer(hidden_size, self.out_channels)
self.rope_scaling_factor = rope_scaling_factor
self.ntk_factor = ntk_factor
self.cap_embedder = nn.Sequential(
nn.LayerNorm(context_dim),
nn.Linear(context_dim, hidden_size, bias=True),
)
def forward(self, x, t, context):
"""
Forward pass of DiT.
x: (N, C, T) tensor of temporal inputs (latent representations of melspec)
t: (N,) tensor of diffusion timesteps
y: (N,max_tokens_len=77, context_dim)
"""
self.freqs_cis = self.freqs_cis.to(x.device)
x = rearrange(x, 'b c t -> b t c')
x = self.proj_in(x)
cap_mask = torch.ones((context.shape[0], context.shape[1]), dtype=torch.int32, device=x.device) # [B, T] video时一直用非mask
mask = torch.ones((x.shape[0], x.shape[1]), dtype=torch.int32, device=x.device)
t = self.t_embedder(t) # [B, 768]
# get pooling feature
cap_mask_float = cap_mask.float().unsqueeze(-1)
cap_feats_pool = (context * cap_mask_float).sum(dim=1) / cap_mask_float.sum(dim=1)
cap_feats_pool = cap_feats_pool.to(context) # [B, 768]
cap_emb = self.cap_embedder(cap_feats_pool) # [B, 768]
adaln_input = t + cap_emb
cap_mask = cap_mask.bool()
for block in self.blocks:
x = block(
x, mask, context, cap_mask, self.freqs_cis[:x.size(1)],
adaln_input=adaln_input
)
x = self.final_layer(x, adaln_input) # (N, out_channels,T)
x = rearrange(x, 'b t c -> b c t')
return x
@staticmethod
def precompute_freqs_cis(
dim: int,
end: int,
theta: float = 10000.0,
rope_scaling_factor: float = 1.0,
ntk_factor: float = 1.0
):
"""
Precompute the frequency tensor for complex exponentials (cis) with
given dimensions.
This function calculates a frequency tensor with complex exponentials
using the given dimension 'dim' and the end index 'end'. The 'theta'
parameter scales the frequencies. The returned tensor contains complex
values in complex64 data type.
Args:
dim (int): Dimension of the frequency tensor.
end (int): End index for precomputing frequencies.
theta (float, optional): Scaling factor for frequency computation.
Defaults to 10000.0.
Returns:
torch.Tensor: Precomputed frequency tensor with complex
exponentials.
"""
theta = theta * ntk_factor
print(f"theta {theta} rope scaling {rope_scaling_factor} ntk {ntk_factor}")
freqs = 1.0 / (theta ** (
torch.arange(0, dim, 2)[: (dim // 2)].float().cuda() / dim
))
t = torch.arange(end, device=freqs.device, dtype=torch.float) # type: ignore
t = t / rope_scaling_factor
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
class TxtFlagLargeImprovedDiTV2(TxtFlagLargeDiT):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
in_channels,
context_dim,
hidden_size=1152,
depth=28,
num_heads=16,
max_len = 1000,
):
super().__init__(in_channels, context_dim, hidden_size, depth, num_heads, max_len)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers and proj_in:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in SiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
print('-------------------------------- successfully init! --------------------------------')