Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,350 Bytes
a84a65c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import argparse, os, sys, glob
import pathlib
directory = pathlib.Path(os.getcwd())
print(directory)
sys.path.append(str(directory))
import torch
import numpy as np
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
import pandas as pd
from tqdm import tqdm
import preprocess.n2s_by_openai as n2s
from vocoder.bigvgan.models import VocoderBigVGAN
import soundfile
import torchaudio, math
def load_model_from_config(config, ckpt = None, verbose=True):
model = instantiate_from_config(config.model)
if ckpt:
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
sd = pl_sd["state_dict"]
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
else:
print(f"Note chat no ckpt is loaded !!!")
model.cuda()
model.eval()
return model
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
# default="A large truck driving by as an emergency siren wails and truck horn honks",
default='This instrumental song features a relaxing melody with a country feel, accompanied by a guitar, piano, simple percussion, and bass in a slow tempo',
help="the prompt to generate"
)
parser.add_argument(
"--sample_rate",
type=int,
default="16000",
help="sample rate of wav"
)
parser.add_argument(
"--test-dataset",
default="none",
help="test which dataset: testset"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2audio-samples"
)
parser.add_argument(
"--ddim_steps",
type=int,
default=25,
help="number of ddim sampling steps",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=20, # keep fix
help="latent height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=312, # keep fix
help="latent width, in pixel space",
)
parser.add_argument(
"--n_samples",
type=int,
default=1,
help="how many samples to produce for the given prompt",
)
parser.add_argument(
"--scale",
type=float,
default=5.0, # if it's 1, only condition is taken into consideration
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"-r",
"--resume",
type=str,
const=True,
default="",
nargs="?",
help="resume from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
type=str,
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default="",
)
parser.add_argument(
"--vocoder-ckpt",
type=str,
help="paths to vocoder checkpoint",
default='vocoder/logs/audioset',
)
return parser.parse_args()
class GenSamples:
def __init__(self,opt, model,outpath,config, vocoder = None,save_mel = True,save_wav = True) -> None:
self.opt = opt
self.model = model
self.outpath = outpath
if save_wav:
assert vocoder is not None
self.vocoder = vocoder
self.save_mel = save_mel
self.save_wav = save_wav
self.channel_dim = self.model.channels
self.config = config
def gen_test_sample(self,prompt, mel_name = None,wav_name = None, gt=None, video=None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
uc = None
record_dicts = []
if self.opt.scale != 1.0:
try: # audiocaps
uc = self.model.get_learned_conditioning({'ori_caption': "",'struct_caption': ""})
except: # audioset
uc = self.model.get_learned_conditioning(prompt['ori_caption'])
for n in range(self.opt.n_iter):# trange(self.opt.n_iter, desc="Sampling"):
try: # audiocaps
c = self.model.get_learned_conditioning(prompt) # shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
except: # audioset
c = self.model.get_learned_conditioning(prompt['ori_caption'])
if self.channel_dim>0:
shape = [self.channel_dim, self.opt.H, self.opt.W] # (z_dim, 80//2^x, 848//2^x)
else:
shape = [1, self.opt.H, self.opt.W]
x0 = torch.randn(shape, device=self.model.device)
if self.opt.scale == 1: # w/o cfg
sample, _ = self.model.sample(c, 1, timesteps=self.opt.ddim_steps, x_latent=x0)
else: # cfg
sample, _ = self.model.sample_cfg(c, self.opt.scale, uc, 1, timesteps=self.opt.ddim_steps, x_latent=x0)
x_samples_ddim = self.model.decode_first_stage(sample)
for idx,spec in enumerate(x_samples_ddim):
spec = spec.squeeze(0).cpu().numpy()
record_dict = {'caption':prompt['ori_caption'][0]}
if self.save_mel:
mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy')
np.save(mel_path,spec)
record_dict['mel_path'] = mel_path
if self.save_wav:
wav = self.vocoder.vocode(spec)
wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav')
soundfile.write(wav_path, wav, self.opt.sample_rate)
record_dict['audio_path'] = wav_path
record_dicts.append(record_dict)
# if gt != None:
# wav_gt = self.vocoder.vocode(gt)
# wav_path = os.path.join(self.outpath, wav_name + f'_gt.wav')
# soundfile.write(wav_path, wav_gt, 16000)
return record_dicts
def main():
opt = parse_args()
# torch.manual_seed(55)
config = OmegaConf.load(opt.base)
model = load_model_from_config(config, opt.resume)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
os.makedirs(opt.outdir, exist_ok=True)
vocoder = VocoderBigVGAN(opt.vocoder_ckpt,device)
generator = GenSamples(opt, model,opt.outdir,config, vocoder,save_mel = False,save_wav = True)
csv_dicts = []
with torch.no_grad():
with model.ema_scope():
if opt.test_dataset != 'none':
if opt.test_dataset == 'testset':
test_dataset = instantiate_from_config(config['test_dataset'])
video = None
else:
raise NotImplementedError
print(f"Dataset: {type(test_dataset)} LEN: {len(test_dataset)}")
temp_n = 0
int_s = 0
for item in tqdm(test_dataset):
int_s += 1
if int_s < 2:
continue
# int_s += 1
prompt,f_name, gt = item['caption'],item['f_name'],item['image']
vname_num_split_index = f_name.rfind('_')# file_names[b]:video_name+'_'+num
v_n,num = f_name[:vname_num_split_index],f_name[vname_num_split_index+1:]
mel_name = f'{v_n}_sample_{num}'
wav_name = f'{v_n}_sample_{num}'
# write_gt_wav(v_n,opt.test_dataset2,opt.outdir,opt.sample_rate)
csv_dicts.extend(generator.gen_test_sample(prompt, mel_name=mel_name ,wav_name=wav_name, gt=gt, video=video))
if temp_n > 1:
break
temp_n += 1
df = pd.DataFrame.from_dict(csv_dicts)
df.to_csv(os.path.join(opt.outdir,'result.csv'),sep='\t',index=False)
else:
ori_caption = opt.prompt
struct_caption = n2s.get_struct(ori_caption)
# struct_caption = f'<{ori_caption}& all>'
print(f"The structed caption by Chatgpt is : {struct_caption}")
wav_name = f'{ori_caption.strip().replace(" ", "-")}'
prompt = {'ori_caption':[ori_caption],'struct_caption':[struct_caption]}
generator.gen_test_sample(prompt, wav_name=wav_name)
print(f"Your samples are ready and waiting four you here: \n{opt.outdir} \nEnjoy.")
if __name__ == "__main__":
main()
|