File size: 10,527 Bytes
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
060e76c
 
be92061
a84a65c
060e76c
 
 
 
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
from typing import Optional, Tuple, List
import torch
import torch.nn as nn
import torch.nn.functional as F
import warnings
import math
try:
    from flash_attn import flash_attn_func
    is_flash_attn = True
except:
    is_flash_attn = False
from flash_attn import flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
from einops import rearrange
from ldm.modules.diffusionmodules.flag_large_dit_moe import Attention, FeedForward, RMSNorm, modulate, TimestepEmbedder

#############################################################################
#                               Core DiT Model                              #
#############################################################################


class TransformerBlock(nn.Module):
    def __init__(self, layer_id: int, dim: int, n_heads: int, n_kv_heads: int,
                 multiple_of: int, ffn_dim_multiplier: float, norm_eps: float,
                 qk_norm: bool, y_dim: int) -> None:
        super().__init__()
        self.dim = dim
        self.head_dim = dim // n_heads
        self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim)
        self.feed_forward = FeedForward(
            dim=dim, hidden_dim=4 * dim, multiple_of=multiple_of,
            ffn_dim_multiplier=ffn_dim_multiplier,
        )
        self.layer_id = layer_id
        self.attention_norm = RMSNorm(dim, eps=norm_eps)
        self.ffn_norm = RMSNorm(dim, eps=norm_eps)

        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(
                dim, 6 * dim, bias=True
            ),
        )
        self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)

    def forward(
        self,
        x: torch.Tensor,
        x_mask: torch.Tensor,
        y: torch.Tensor,
        y_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
        adaln_input: Optional[torch.Tensor] = None,
    ):
        """
        Perform a forward pass through the TransformerBlock.

        Args:
            x (torch.Tensor): Input tensor.
            freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
            mask (torch.Tensor, optional): Masking tensor for attention.
                Defaults to None.

        Returns:
            torch.Tensor: Output tensor after applying attention and
                feedforward layers.

        """
        if adaln_input is not None:
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = \
                self.adaLN_modulation(adaln_input).chunk(6, dim=1)

            h = x + gate_msa.unsqueeze(1) * self.attention(
                modulate(self.attention_norm(x), shift_msa, scale_msa),
                x_mask,
                freqs_cis,
                self.attention_y_norm(y), y_mask,
            )
            out = h + gate_mlp.unsqueeze(1) * self.feed_forward(
                modulate(self.ffn_norm(h), shift_mlp, scale_mlp),
            )

        else:
            h = x + self.attention(
                self.attention_norm(x), x_mask, freqs_cis, self.attention_y_norm(y), y_mask,
            )
            out = h + self.feed_forward(self.ffn_norm(h))

        return out

class FinalLayer(nn.Module):
    """
    The final layer of DiT.
    """
    def __init__(self, hidden_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(
            hidden_size, elementwise_affine=False, eps=1e-6,
        )
        self.linear = nn.Linear(
            hidden_size, out_channels, bias=True
        )
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(
                hidden_size, 2 * hidden_size, bias=True
            ),
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x



class TxtFlagLargeDiT(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """

    def __init__(
        self,
        in_channels,
        context_dim,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        max_len = 1000,
        n_kv_heads=None,
        multiple_of: int = 256,
        ffn_dim_multiplier: Optional[float] = None,
        norm_eps=1e-5,
        qk_norm=None,
        rope_scaling_factor: float = 1.,
        ntk_factor: float = 1.
    ):
        super().__init__()
        self.in_channels = in_channels # vae dim
        self.out_channels = in_channels
        self.num_heads = num_heads
        self.t_embedder = TimestepEmbedder(hidden_size)

        self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)


        self.blocks = nn.ModuleList([
            TransformerBlock(layer_id, hidden_size, num_heads, n_kv_heads, multiple_of,
                             ffn_dim_multiplier, norm_eps, qk_norm, context_dim)
            for layer_id in range(depth)
        ])

        self.freqs_cis = TxtFlagLargeDiT.precompute_freqs_cis(hidden_size // num_heads, max_len,
                       rope_scaling_factor=rope_scaling_factor, ntk_factor=ntk_factor)

        self.final_layer = FinalLayer(hidden_size, self.out_channels)
        self.rope_scaling_factor = rope_scaling_factor
        self.ntk_factor = ntk_factor

        self.cap_embedder = nn.Sequential(
            nn.LayerNorm(context_dim),
            nn.Linear(context_dim, hidden_size, bias=True),
        )


    def forward(self, x, t, context):
        """
        Forward pass of DiT.
        x: (N, C, T) tensor of temporal inputs (latent representations of melspec)
        t: (N,) tensor of diffusion timesteps
        y: (N,max_tokens_len=77, context_dim)
        """
        self.freqs_cis = self.freqs_cis.to(x.device)

        x = rearrange(x, 'b c t -> b t c')
        x = self.proj_in(x)

        cap_mask = torch.ones((context.shape[0], context.shape[1]), dtype=torch.int32, device=x.device)  # [B, T] video时一直用非mask
        mask = torch.ones((x.shape[0], x.shape[1]), dtype=torch.int32, device=x.device)

        t = self.t_embedder(t)  # [B, 768]

        # get pooling feature
        cap_mask_float = cap_mask.float().unsqueeze(-1)
        cap_feats_pool = (context * cap_mask_float).sum(dim=1) / cap_mask_float.sum(dim=1)
        cap_feats_pool = cap_feats_pool.to(context) # [B, 768]
        cap_emb = self.cap_embedder(cap_feats_pool)  # [B, 768]

        adaln_input = t + cap_emb
        cap_mask = cap_mask.bool()
        for block in self.blocks:
            x = block(
                x, mask, context, cap_mask, self.freqs_cis[:x.size(1)],
                adaln_input=adaln_input
            )

        x = self.final_layer(x, adaln_input)                # (N, out_channels,T)
        x = rearrange(x, 'b t c -> b c t')
        return x

    @staticmethod
    def precompute_freqs_cis(
        dim: int,
        end: int,
        theta: float = 10000.0,
        rope_scaling_factor: float = 1.0,
        ntk_factor: float = 1.0
    ):
        """
        Precompute the frequency tensor for complex exponentials (cis) with
        given dimensions.

        This function calculates a frequency tensor with complex exponentials
        using the given dimension 'dim' and the end index 'end'. The 'theta'
        parameter scales the frequencies. The returned tensor contains complex
        values in complex64 data type.

        Args:
            dim (int): Dimension of the frequency tensor.
            end (int): End index for precomputing frequencies.
            theta (float, optional): Scaling factor for frequency computation.
                Defaults to 10000.0.

        Returns:
            torch.Tensor: Precomputed frequency tensor with complex
                exponentials.
        """

        theta = theta * ntk_factor

        print(f"theta {theta} rope scaling {rope_scaling_factor} ntk {ntk_factor}")
        if torch.cuda.is_available():
            freqs = 1.0 / (theta ** (
            torch.arange(0, dim, 2)[: (dim // 2)].float().cuda() / dim
        ))
        else:
            freqs = 1.0 / (theta ** (
                torch.arange(0, dim, 2)[: (dim // 2)].float() / dim
            ))
        t = torch.arange(end, device=freqs.device, dtype=torch.float)  # type: ignore
        t = t / rope_scaling_factor
        freqs = torch.outer(t, freqs).float()  # type: ignore
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
        return freqs_cis




class TxtFlagLargeImprovedDiTV2(TxtFlagLargeDiT):
    """
    Diffusion model with a Transformer backbone.
    """

    def __init__(
        self,
        in_channels,
        context_dim,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        max_len = 1000,
    ):
        super().__init__(in_channels, context_dim, hidden_size, depth, num_heads, max_len)

        self.initialize_weights()


    def initialize_weights(self):
        # Initialize transformer layers and proj_in:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in SiT blocks:
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

        print('-------------------------------- successfully init! --------------------------------')