Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,904 Bytes
a84a65c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import numpy as np
import functools
from typing import Optional, Tuple, List
import torch
import torch.nn as nn
import warnings
import math
import torch.nn.functional as F
from flash_attn import flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
from einops import rearrange
try:
from flash_attn import flash_attn_func
is_flash_attn = True
except:
is_flash_attn = False
try:
from apex.normalization import FusedRMSNorm as RMSNorm
except ImportError:
warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
output = self._norm(x.float()).type_as(x)
return output * self.weight
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def num_params(model, print_out=True, model_name="model"):
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
return parameters
#############################################################################
# Core DiT Model #
#############################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class Conv1DFinalLayer(nn.Module):
"""
The final layer of CrossAttnDiT.
"""
def __init__(self, hidden_size, out_channels):
super().__init__()
self.norm_final = nn.GroupNorm(16,hidden_size)
self.conv1d = nn.Conv1d(hidden_size, out_channels,kernel_size=1)
def forward(self, x): # x:(B,C,T)
x = self.norm_final(x)
x = self.conv1d(x)
return x
class ConditionEmbedder(nn.Module):
def __init__(self, hidden_size, context_dim):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(context_dim, hidden_size, bias=True),
nn.GELU(), # approximate='tanh'
nn.Linear(hidden_size, hidden_size, bias=True),
nn.LayerNorm(hidden_size)
)
def forward(self,x):
return self.mlp(x)
class Attention(nn.Module):
def __init__(self, dim: int, n_heads: int, n_kv_heads: Optional[int], qk_norm: bool, y_dim: int):
super().__init__()
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
model_parallel_size = 1
self.n_local_heads = n_heads // model_parallel_size
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = dim // n_heads
self.wq = nn.Linear(
dim, n_heads * self.head_dim, bias=False
)
self.wk = nn.Linear(
dim, self.n_kv_heads * self.head_dim, bias=False
)
self.wv = nn.Linear(
dim, self.n_kv_heads * self.head_dim, bias=False
)
if y_dim > 0:
self.wk_y = nn.Linear(
y_dim, self.n_kv_heads * self.head_dim, bias=False
)
self.wv_y = nn.Linear(
y_dim, self.n_kv_heads * self.head_dim, bias=False
)
self.gate = nn.Parameter(torch.zeros([self.n_local_heads]))
self.wo = nn.Linear(
n_heads * self.head_dim, dim, bias=False
)
if qk_norm:
self.q_norm = nn.LayerNorm(self.n_local_heads * self.head_dim)
self.k_norm = nn.LayerNorm(self.n_local_kv_heads * self.head_dim)
if y_dim > 0:
self.ky_norm = nn.LayerNorm(self.n_local_kv_heads * self.head_dim)
else:
self.ky_norm = nn.Identity()
else:
self.q_norm = self.k_norm = nn.Identity()
self.ky_norm = nn.Identity()
@staticmethod
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
"""
Reshape frequency tensor for broadcasting it with another tensor.
This function reshapes the frequency tensor to have the same shape as
the target tensor 'x' for the purpose of broadcasting the frequency
tensor during element-wise operations.
Args:
freqs_cis (torch.Tensor): Frequency tensor to be reshaped.
x (torch.Tensor): Target tensor for broadcasting compatibility.
Returns:
torch.Tensor: Reshaped frequency tensor.
Raises:
AssertionError: If the frequency tensor doesn't match the expected
shape.
AssertionError: If the target tensor 'x' doesn't have the expected
number of dimensions.
"""
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1
for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
@staticmethod
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency
tensor.
This function applies rotary embeddings to the given query 'xq' and
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
input tensors are reshaped as complex numbers, and the frequency tensor
is reshaped for broadcasting compatibility. The resulting tensors
contain rotary embeddings and are returned as real tensors.
Args:
xq (torch.Tensor): Query tensor to apply rotary embeddings.
xk (torch.Tensor): Key tensor to apply rotary embeddings.
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
exponentials.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
and key tensor with rotary embeddings.
"""
with torch.cuda.amp.autocast(enabled=False):
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = Attention.reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
# copied from huggingface modeling_llama.py
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.n_local_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
def forward(
self, x: torch.Tensor, x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
y: torch.Tensor, y_mask: torch.Tensor,
) -> torch.Tensor:
"""
Forward pass of the attention module.
Args:
x (torch.Tensor): Input tensor.
freqs_cis (torch.Tensor): Precomputed frequency tensor.
Returns:
torch.Tensor: Output tensor after attention.
"""
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
dtype = xq.dtype
xq = self.q_norm(xq)
xk = self.k_norm(xk)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xq, xk = Attention.apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
xq, xk = xq.to(dtype), xk.to(dtype)
if is_flash_attn and dtype in [torch.float16, torch.bfloat16]:
# begin var_len flash attn
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
xq, xk, xv, x_mask, seqlen
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
if self.proportional_attn:
softmax_scale = math.sqrt(math.log(seqlen, self.base_seqlen) / self.head_dim)
else:
softmax_scale = math.sqrt(1 / self.head_dim)
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=0.,
causal=False,
softmax_scale=softmax_scale
)
output = pad_input(attn_output_unpad, indices_q, bsz, seqlen)
# end var_len_flash_attn
else:
output = F.scaled_dot_product_attention(
xq.permute(0, 2, 1, 3),
xk.permute(0, 2, 1, 3),
xv.permute(0, 2, 1, 3),
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_local_heads, seqlen, -1),
).permute(0, 2, 1, 3).to(dtype)
if hasattr(self, "wk_y"): # cross-attention
yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_local_kv_heads, self.head_dim)
yv = self.wv_y(y).view(bsz, -1, self.n_local_kv_heads, self.head_dim)
n_rep = self.n_local_heads // self.n_local_kv_heads
if n_rep >= 1:
yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
output_y = F.scaled_dot_product_attention(
xq.permute(0, 2, 1, 3),
yk.permute(0, 2, 1, 3),
yv.permute(0, 2, 1, 3),
y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_local_heads, seqlen, -1)
).permute(0, 2, 1, 3)
output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
output = output + output_y
output = output.flatten(-2)
return self.wo(output)
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(
hidden_size, elementwise_affine=False, eps=1e-6,
)
self.linear = nn.Linear(
hidden_size, out_channels, bias=True
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(
hidden_size, 2 * hidden_size, bias=True
),
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float],
):
"""
Initialize the FeedForward module.
Args:
dim (int): Input dimension.
hidden_dim (int): Hidden dimension of the feedforward layer.
multiple_of (int): Value to ensure hidden dimension is a multiple
of this value.
ffn_dim_multiplier (float, optional): Custom multiplier for hidden
dimension. Defaults to None.
Attributes:
w1 (nn.Linear): Linear transformation for the first
layer.
w2 (nn.Linear): Linear transformation for the second layer.
w3 (nn.Linear): Linear transformation for the third
layer.
"""
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * (
(hidden_dim + multiple_of - 1) // multiple_of
)
self.w1 = nn.Linear(
dim, hidden_dim, bias=False
)
self.w2 = nn.Linear(
hidden_dim, dim, bias=False
)
self.w3 = nn.Linear(
dim, hidden_dim, bias=False
)
@torch.compile
def _forward_silu_gating(self, x1, x3):
return F.silu(x1) * x3
def forward(self, x):
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
class MoE(nn.Module):
LOAD_BALANCING_LOSSES = []
def __init__(
self,
dim: int,
hidden_dim: int,
num_experts: int,
multiple_of: int,
ffn_dim_multiplier: float
):
super().__init__()
self.num_freq_experts = num_experts
self.local_experts = [str(i) for i in range(num_experts)]
self.time_experts = nn.ModuleDict({
i : FeedForward(dim, hidden_dim, multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,) for i in self.local_experts
})
self.freq_experts = nn.ModuleDict({
i: FeedForward(dim, hidden_dim, multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier, ) for i in self.local_experts
})
def forward(self, x, time):
orig_shape = x.shape # [B, T, 768]
x = x.view(-1, x.shape[-1]) # [N, 768] 按照sample1 sample2 sample3拍平
expert_indices = (time // 250).unsqueeze(1).repeat(1, orig_shape[1])
flat_expert_indices = expert_indices.view(-1) # [N] 找到每个expert位置
# time-moe
y = torch.zeros_like(x)
for str_i, expert in self.time_experts.items(): # 找到需要用哪个expert算
y[flat_expert_indices == int(str_i)] = expert(x[flat_expert_indices == int(str_i)])
y = y.view(*orig_shape).to(x)
z = torch.zeros_like(y)
# frequency-moe
range = orig_shape[-1] // self.num_freq_experts
for str_i, expert in self.freq_experts.items(): # 找到需要用哪个expert算
idx = int(str_i)
region = torch.zeros_like(z)
region[:, :, range * idx: range * (idx+1)] = True
z[:, :, range * idx: range * (idx+1)] = expert(y * region)[:, :, range * idx: range * (idx+1)]
return z.view(*orig_shape).to(y)
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, dim: int, n_heads: int, n_kv_heads: int,
multiple_of: int, ffn_dim_multiplier: float, norm_eps: float,
qk_norm: bool, y_dim: int, num_experts) -> None:
super().__init__()
self.dim = dim
self.head_dim = dim // n_heads
self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim)
self.feed_forward = MoE(
dim=dim, hidden_dim=4 * dim, multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier, num_experts=num_experts,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(dim, eps=norm_eps)
self.ffn_norm = RMSNorm(dim, eps=norm_eps)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(
dim, 6 * dim, bias=True
),
)
self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
y: torch.Tensor,
y_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor] = None,
time=None
):
"""
Perform a forward pass through the TransformerBlock.
Args:
x (torch.Tensor): Input tensor.
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
mask (torch.Tensor, optional): Masking tensor for attention.
Defaults to None.
Returns:
torch.Tensor: Output tensor after applying attention and
feedforward layers.
"""
if adaln_input is not None:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = \
self.adaLN_modulation(adaln_input).chunk(6, dim=1)
h = x + gate_msa.unsqueeze(1) * self.attention(
modulate(self.attention_norm(x), shift_msa, scale_msa),
x_mask,
freqs_cis,
self.attention_y_norm(y), y_mask
)
out = h + gate_mlp.unsqueeze(1) * self.feed_forward(
modulate(self.ffn_norm(h), shift_mlp, scale_mlp), time,
)
else:
h = x + self.attention(
self.attention_norm(x), x_mask, freqs_cis, self.attention_y_norm(y), y_mask,
)
out = h + self.feed_forward(self.ffn_norm(h), time)
return out
class VideoFlagLargeDiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
in_channels,
context_dim,
hidden_size=1152,
depth=28,
num_heads=16,
max_len = 1000,
n_kv_heads=None,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps=1e-5,
qk_norm=None,
rope_scaling_factor: float = 1.,
ntk_factor: float = 1,
num_experts=8,
):
super().__init__()
self.in_channels = in_channels # vae dim
self.out_channels = in_channels
self.num_heads = num_heads
self.t_embedder = TimestepEmbedder(hidden_size)
self.c_embedder = ConditionEmbedder(hidden_size, context_dim)
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
self.cap_embedder = nn.Sequential(
nn.LayerNorm(hidden_size),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.blocks = nn.ModuleList([
TransformerBlock(layer_id, hidden_size, num_heads, n_kv_heads, multiple_of,
ffn_dim_multiplier, norm_eps, qk_norm, hidden_size, num_experts)
for layer_id in range(depth)
])
self.freqs_cis = VideoFlagLargeDiT.precompute_freqs_cis(hidden_size // num_heads, max_len,
rope_scaling_factor=rope_scaling_factor, ntk_factor=ntk_factor)
self.final_layer = FinalLayer(hidden_size, self.out_channels)
self.rope_scaling_factor = rope_scaling_factor
self.ntk_factor = ntk_factor
num_params(self.blocks, model_name='transformer block')
def forward(self, x, t, context):
"""
Forward pass of DiT.
x: (N, C, T) tensor of temporal inputs (latent representations of melspec)
t: (N,) tensor of diffusion timesteps
y: (N,max_tokens_len=77, context_dim)
"""
self.freqs_cis = self.freqs_cis.to(x.device)
x = rearrange(x, 'b c t -> b t c')
x = self.proj_in(x)
cap_mask = torch.ones((context.shape[0], context.shape[1]), dtype=torch.int32, device=x.device) # [B, T] video时一直用非mask
mask = torch.ones((x.shape[0], x.shape[1]), dtype=torch.int32, device=x.device)
t_embedding = self.t_embedder(t) # [B, 768]
c = self.c_embedder(context) # [B, T, 768]
# get pooling feature
cap_mask_float = cap_mask.float().unsqueeze(-1)
cap_feats_pool = (c * cap_mask_float).sum(dim=1) / cap_mask_float.sum(dim=1)
cap_feats_pool = cap_feats_pool.to(c) # [B, 768]
cap_emb = self.cap_embedder(cap_feats_pool) # [B, 768]
adaln_input = t_embedding + cap_emb
cap_mask = cap_mask.bool()
for block in self.blocks:
x = block(
x, mask, c, cap_mask, self.freqs_cis[:x.size(1)],
adaln_input=adaln_input, time=t
)
x = self.final_layer(x, adaln_input) # (N, out_channels,T)
x = rearrange(x, 'b t c -> b c t')
return x
@staticmethod
def precompute_freqs_cis(
dim: int,
end: int,
theta: float = 10000.0,
rope_scaling_factor: float = 1.0,
ntk_factor: float = 1.0
):
"""
Precompute the frequency tensor for complex exponentials (cis) with
given dimensions.
This function calculates a frequency tensor with complex exponentials
using the given dimension 'dim' and the end index 'end'. The 'theta'
parameter scales the frequencies. The returned tensor contains complex
values in complex64 data type.
Args:
dim (int): Dimension of the frequency tensor.
end (int): End index for precomputing frequencies.
theta (float, optional): Scaling factor for frequency computation.
Defaults to 10000.0.
Returns:
torch.Tensor: Precomputed frequency tensor with complex
exponentials.
"""
theta = theta * ntk_factor
print(f"theta {theta} rope scaling {rope_scaling_factor} ntk {ntk_factor}")
freqs = 1.0 / (theta ** (
torch.arange(0, dim, 2)[: (dim // 2)].float().cuda() / dim
))
t = torch.arange(end, device=freqs.device, dtype=torch.float) # type: ignore
t = t / rope_scaling_factor
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
|