Spaces:
Build error
Build error
Upload 12 files
Browse files- mono2binaural/src/__pycache__/models.cpython-38.pyc +0 -0
- mono2binaural/src/__pycache__/utils.cpython-38.pyc +0 -0
- mono2binaural/src/__pycache__/warping.cpython-38.pyc +0 -0
- mono2binaural/src/models.py +110 -0
- mono2binaural/src/utils.py +251 -0
- mono2binaural/src/warping.py +113 -0
- mono2binaural/useful_ckpts/m2b/binaural_network.net +0 -0
- mono2binaural/useful_ckpts/m2b/tx_positions.txt +0 -0
- mono2binaural/useful_ckpts/m2b/tx_positions2.txt +0 -0
- mono2binaural/useful_ckpts/m2b/tx_positions3.txt +0 -0
- mono2binaural/useful_ckpts/m2b/tx_positions4.txt +0 -0
- mono2binaural/useful_ckpts/m2b/tx_positions5.txt +0 -0
mono2binaural/src/__pycache__/models.cpython-38.pyc
ADDED
|
Binary file (5.12 kB). View file
|
|
|
mono2binaural/src/__pycache__/utils.cpython-38.pyc
ADDED
|
Binary file (2.54 kB). View file
|
|
|
mono2binaural/src/__pycache__/warping.cpython-38.pyc
ADDED
|
Binary file (4.47 kB). View file
|
|
|
mono2binaural/src/models.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import scipy.linalg
|
| 3 |
+
from scipy.spatial.transform import Rotation as R
|
| 4 |
+
import torch as th
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from src.warping import GeometricTimeWarper, MonotoneTimeWarper
|
| 8 |
+
from src.utils import Net
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class GeometricWarper(nn.Module):
|
| 12 |
+
def __init__(self, sampling_rate=48000):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.warper = GeometricTimeWarper(sampling_rate=sampling_rate)
|
| 15 |
+
|
| 16 |
+
def _transmitter_mouth(self, view):
|
| 17 |
+
# offset between tracking markers and real mouth position in the dataset
|
| 18 |
+
mouth_offset = np.array([0.09, 0, -0.20])
|
| 19 |
+
quat = view[:, 3:, :].transpose(2, 1).contiguous().detach().cpu().view(-1, 4).numpy()
|
| 20 |
+
# make sure zero-padded values are set to non-zero values (else scipy raises an exception)
|
| 21 |
+
norms = scipy.linalg.norm(quat, axis=1)
|
| 22 |
+
eps_val = (norms == 0).astype(np.float32)
|
| 23 |
+
quat = quat + eps_val[:, None]
|
| 24 |
+
transmitter_rot_mat = R.from_quat(quat)
|
| 25 |
+
transmitter_mouth = transmitter_rot_mat.apply(mouth_offset, inverse=True)
|
| 26 |
+
transmitter_mouth = th.Tensor(transmitter_mouth).view(view.shape[0], -1, 3).transpose(2, 1).contiguous()
|
| 27 |
+
if view.is_cuda:
|
| 28 |
+
transmitter_mouth = transmitter_mouth.cuda()
|
| 29 |
+
return transmitter_mouth
|
| 30 |
+
|
| 31 |
+
def _3d_displacements(self, view):
|
| 32 |
+
transmitter_mouth = self._transmitter_mouth(view)
|
| 33 |
+
# offset between tracking markers and ears in the dataset
|
| 34 |
+
left_ear_offset = th.Tensor([0, -0.08, -0.22]).cuda() if view.is_cuda else th.Tensor([0, -0.08, -0.22])
|
| 35 |
+
right_ear_offset = th.Tensor([0, 0.08, -0.22]).cuda() if view.is_cuda else th.Tensor([0, 0.08, -0.22])
|
| 36 |
+
# compute displacements between transmitter mouth and receiver left/right ear
|
| 37 |
+
displacement_left = view[:, 0:3, :] + transmitter_mouth - left_ear_offset[None, :, None]
|
| 38 |
+
displacement_right = view[:, 0:3, :] + transmitter_mouth - right_ear_offset[None, :, None]
|
| 39 |
+
displacement = th.stack([displacement_left, displacement_right], dim=1)
|
| 40 |
+
return displacement
|
| 41 |
+
|
| 42 |
+
def _warpfield(self, view, seq_length):
|
| 43 |
+
return self.warper.displacements2warpfield(self._3d_displacements(view), seq_length)
|
| 44 |
+
|
| 45 |
+
def forward(self, mono, view):
|
| 46 |
+
'''
|
| 47 |
+
:param mono: input signal as tensor of shape B x 1 x T
|
| 48 |
+
:param view: rx/tx position/orientation as tensor of shape B x 7 x K (K = T / 400)
|
| 49 |
+
:return: warped: warped left/right ear signal as tensor of shape B x 2 x T
|
| 50 |
+
'''
|
| 51 |
+
return self.warper(th.cat([mono, mono], dim=1), self._3d_displacements(view))
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class Warpnet(nn.Module):
|
| 55 |
+
def __init__(self, layers=4, channels=64, view_dim=7):
|
| 56 |
+
super().__init__()
|
| 57 |
+
self.layers = [nn.Conv1d(view_dim if l == 0 else channels, channels, kernel_size=2) for l in range(layers)]
|
| 58 |
+
self.layers = nn.ModuleList(self.layers)
|
| 59 |
+
self.linear = nn.Conv1d(channels, 2, kernel_size=1)
|
| 60 |
+
self.neural_warper = MonotoneTimeWarper()
|
| 61 |
+
self.geometric_warper = GeometricWarper()
|
| 62 |
+
|
| 63 |
+
def neural_warpfield(self, view, seq_length):
|
| 64 |
+
warpfield = view
|
| 65 |
+
for layer in self.layers:
|
| 66 |
+
warpfield = F.pad(warpfield, pad=[1, 0])
|
| 67 |
+
warpfield = F.relu(layer(warpfield))
|
| 68 |
+
warpfield = self.linear(warpfield)
|
| 69 |
+
warpfield = F.interpolate(warpfield, size=seq_length)
|
| 70 |
+
return warpfield
|
| 71 |
+
|
| 72 |
+
def forward(self, mono, view):
|
| 73 |
+
'''
|
| 74 |
+
:param mono: input signal as tensor of shape B x 1 x T
|
| 75 |
+
:param view: rx/tx position/orientation as tensor of shape B x 7 x K (K = T / 400)
|
| 76 |
+
:return: warped: warped left/right ear signal as tensor of shape B x 2 x T
|
| 77 |
+
'''
|
| 78 |
+
geometric_warpfield = self.geometric_warper._warpfield(view, mono.shape[-1])
|
| 79 |
+
neural_warpfield = self.neural_warpfield(view, mono.shape[-1])
|
| 80 |
+
warpfield = geometric_warpfield + neural_warpfield
|
| 81 |
+
# ensure causality
|
| 82 |
+
warpfield = -F.relu(-warpfield) # the predicted warp
|
| 83 |
+
warped = self.neural_warper(th.cat([mono, mono], dim=1), warpfield)
|
| 84 |
+
return warped
|
| 85 |
+
|
| 86 |
+
class BinauralNetwork(Net):
|
| 87 |
+
def __init__(self,
|
| 88 |
+
view_dim=7,
|
| 89 |
+
warpnet_layers=4,
|
| 90 |
+
warpnet_channels=64,
|
| 91 |
+
model_name='binaural_network',
|
| 92 |
+
use_cuda=True):
|
| 93 |
+
super().__init__(model_name, use_cuda)
|
| 94 |
+
self.warper = Warpnet(warpnet_layers, warpnet_channels)
|
| 95 |
+
if self.use_cuda:
|
| 96 |
+
self.cuda()
|
| 97 |
+
|
| 98 |
+
def forward(self, mono, view):
|
| 99 |
+
'''
|
| 100 |
+
:param mono: the input signal as a B x 1 x T tensor
|
| 101 |
+
:param view: the receiver/transmitter position as a B x 7 x T tensor
|
| 102 |
+
:return: out: the binaural output produced by the network
|
| 103 |
+
intermediate: a two-channel audio signal obtained from the output of each intermediate layer
|
| 104 |
+
as a list of B x 2 x T tensors
|
| 105 |
+
'''
|
| 106 |
+
# print('mono ', mono.shape)
|
| 107 |
+
# print('view ', view.shape)
|
| 108 |
+
warped = self.warper(mono, view)
|
| 109 |
+
# print('warped ', warped.shape)
|
| 110 |
+
return warped
|
mono2binaural/src/utils.py
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) Facebook, Inc. and its affiliates.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
|
| 5 |
+
This source code is licensed under the license found in the
|
| 6 |
+
LICENSE file in the root directory of this source tree.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch as th
|
| 11 |
+
#import torchaudio as ta
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Net(th.nn.Module):
|
| 15 |
+
|
| 16 |
+
def __init__(self, model_name="network", use_cuda=True):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.use_cuda = use_cuda
|
| 19 |
+
self.model_name = model_name
|
| 20 |
+
|
| 21 |
+
def save(self, model_dir, suffix=''):
|
| 22 |
+
'''
|
| 23 |
+
save the network to model_dir/model_name.suffix.net
|
| 24 |
+
:param model_dir: directory to save the model to
|
| 25 |
+
:param suffix: suffix to append after model name
|
| 26 |
+
'''
|
| 27 |
+
if self.use_cuda:
|
| 28 |
+
self.cpu()
|
| 29 |
+
|
| 30 |
+
if suffix == "":
|
| 31 |
+
fname = f"{model_dir}/{self.model_name}.net"
|
| 32 |
+
else:
|
| 33 |
+
fname = f"{model_dir}/{self.model_name}.{suffix}.net"
|
| 34 |
+
|
| 35 |
+
th.save(self.state_dict(), fname)
|
| 36 |
+
if self.use_cuda:
|
| 37 |
+
self.cuda()
|
| 38 |
+
|
| 39 |
+
def load_from_file(self, model_file):
|
| 40 |
+
'''
|
| 41 |
+
load network parameters from model_file
|
| 42 |
+
:param model_file: file containing the model parameters
|
| 43 |
+
'''
|
| 44 |
+
if self.use_cuda:
|
| 45 |
+
self.cpu()
|
| 46 |
+
|
| 47 |
+
states = th.load(model_file)
|
| 48 |
+
self.load_state_dict(states)
|
| 49 |
+
|
| 50 |
+
if self.use_cuda:
|
| 51 |
+
self.cuda()
|
| 52 |
+
print(f"Loaded: {model_file}")
|
| 53 |
+
|
| 54 |
+
def load(self, model_dir, suffix=''):
|
| 55 |
+
'''
|
| 56 |
+
load network parameters from model_dir/model_name.suffix.net
|
| 57 |
+
:param model_dir: directory to load the model from
|
| 58 |
+
:param suffix: suffix to append after model name
|
| 59 |
+
'''
|
| 60 |
+
if suffix == "":
|
| 61 |
+
fname = f"{model_dir}/{self.model_name}.net"
|
| 62 |
+
else:
|
| 63 |
+
fname = f"{model_dir}/{self.model_name}.{suffix}.net"
|
| 64 |
+
self.load_from_file(fname)
|
| 65 |
+
|
| 66 |
+
def num_trainable_parameters(self):
|
| 67 |
+
'''
|
| 68 |
+
:return: the number of trainable parameters in the model
|
| 69 |
+
'''
|
| 70 |
+
return sum(p.numel() for p in self.parameters() if p.requires_grad)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# class NewbobAdam(th.optim.Adam):
|
| 74 |
+
|
| 75 |
+
# def __init__(self,
|
| 76 |
+
# weights,
|
| 77 |
+
# net,
|
| 78 |
+
# artifacts_dir,
|
| 79 |
+
# initial_learning_rate=0.001,
|
| 80 |
+
# decay=0.5,
|
| 81 |
+
# max_decay=0.01
|
| 82 |
+
# ):
|
| 83 |
+
# '''
|
| 84 |
+
# Newbob learning rate scheduler
|
| 85 |
+
# :param weights: weights to optimize
|
| 86 |
+
# :param net: the network, must be an instance of type src.utils.Net
|
| 87 |
+
# :param artifacts_dir: (str) directory to save/restore models to/from
|
| 88 |
+
# :param initial_learning_rate: (float) initial learning rate
|
| 89 |
+
# :param decay: (float) value to decrease learning rate by when loss doesn't improve further
|
| 90 |
+
# :param max_decay: (float) maximum decay of learning rate
|
| 91 |
+
# '''
|
| 92 |
+
# super().__init__(weights, lr=initial_learning_rate)
|
| 93 |
+
# self.last_epoch_loss = np.inf
|
| 94 |
+
# self.total_decay = 1
|
| 95 |
+
# self.net = net
|
| 96 |
+
# self.decay = decay
|
| 97 |
+
# self.max_decay = max_decay
|
| 98 |
+
# self.artifacts_dir = artifacts_dir
|
| 99 |
+
# # store initial state as backup
|
| 100 |
+
# if decay < 1.0:
|
| 101 |
+
# net.save(artifacts_dir, suffix="newbob")
|
| 102 |
+
|
| 103 |
+
# def update_lr(self, loss):
|
| 104 |
+
# '''
|
| 105 |
+
# update the learning rate based on the current loss value and historic loss values
|
| 106 |
+
# :param loss: the loss after the current iteration
|
| 107 |
+
# '''
|
| 108 |
+
# if loss > self.last_epoch_loss and self.decay < 1.0 and self.total_decay > self.max_decay:
|
| 109 |
+
# self.total_decay = self.total_decay * self.decay
|
| 110 |
+
# print(f"NewbobAdam: Decay learning rate (loss degraded from {self.last_epoch_loss} to {loss})."
|
| 111 |
+
# f"Total decay: {self.total_decay}")
|
| 112 |
+
# # restore previous network state
|
| 113 |
+
# self.net.load(self.artifacts_dir, suffix="newbob")
|
| 114 |
+
# # decrease learning rate
|
| 115 |
+
# for param_group in self.param_groups:
|
| 116 |
+
# param_group['lr'] = param_group['lr'] * self.decay
|
| 117 |
+
# else:
|
| 118 |
+
# self.last_epoch_loss = loss
|
| 119 |
+
# # save last snapshot to restore it in case of lr decrease
|
| 120 |
+
# if self.decay < 1.0 and self.total_decay > self.max_decay:
|
| 121 |
+
# self.net.save(self.artifacts_dir, suffix="newbob")
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
# class FourierTransform:
|
| 125 |
+
# def __init__(self,
|
| 126 |
+
# fft_bins=2048,
|
| 127 |
+
# win_length_ms=40,
|
| 128 |
+
# frame_rate_hz=100,
|
| 129 |
+
# causal=False,
|
| 130 |
+
# preemphasis=0.0,
|
| 131 |
+
# sample_rate=48000,
|
| 132 |
+
# normalized=False):
|
| 133 |
+
# self.sample_rate = sample_rate
|
| 134 |
+
# self.frame_rate_hz = frame_rate_hz
|
| 135 |
+
# self.preemphasis = preemphasis
|
| 136 |
+
# self.fft_bins = fft_bins
|
| 137 |
+
# self.win_length = int(sample_rate * win_length_ms / 1000)
|
| 138 |
+
# self.hop_length = int(sample_rate / frame_rate_hz)
|
| 139 |
+
# self.causal = causal
|
| 140 |
+
# self.normalized = normalized
|
| 141 |
+
# if self.win_length > self.fft_bins:
|
| 142 |
+
# print('FourierTransform Warning: fft_bins should be larger than win_length')
|
| 143 |
+
|
| 144 |
+
# def _convert_format(self, data, expected_dims):
|
| 145 |
+
# if not type(data) == th.Tensor:
|
| 146 |
+
# data = th.Tensor(data)
|
| 147 |
+
# if len(data.shape) < expected_dims:
|
| 148 |
+
# data = data.unsqueeze(0)
|
| 149 |
+
# if not len(data.shape) == expected_dims:
|
| 150 |
+
# raise Exception(f"FourierTransform: data needs to be a Tensor with {expected_dims} dimensions but got shape {data.shape}")
|
| 151 |
+
# return data
|
| 152 |
+
|
| 153 |
+
# def _preemphasis(self, audio):
|
| 154 |
+
# if self.preemphasis > 0:
|
| 155 |
+
# return th.cat((audio[:, 0:1], audio[:, 1:] - self.preemphasis * audio[:, :-1]), dim=1)
|
| 156 |
+
# return audio
|
| 157 |
+
|
| 158 |
+
# def _revert_preemphasis(self, audio):
|
| 159 |
+
# if self.preemphasis > 0:
|
| 160 |
+
# for i in range(1, audio.shape[1]):
|
| 161 |
+
# audio[:, i] = audio[:, i] + self.preemphasis * audio[:, i-1]
|
| 162 |
+
# return audio
|
| 163 |
+
|
| 164 |
+
# def _magphase(self, complex_stft):
|
| 165 |
+
# mag, phase = ta.functional.magphase(complex_stft, 1.0)
|
| 166 |
+
# return mag, phase
|
| 167 |
+
|
| 168 |
+
# def stft(self, audio):
|
| 169 |
+
# '''
|
| 170 |
+
# wrapper around th.stft
|
| 171 |
+
# audio: wave signal as th.Tensor
|
| 172 |
+
# '''
|
| 173 |
+
# hann = th.hann_window(self.win_length)
|
| 174 |
+
# hann = hann.cuda() if audio.is_cuda else hann
|
| 175 |
+
# spec = th.stft(audio, n_fft=self.fft_bins, hop_length=self.hop_length, win_length=self.win_length,
|
| 176 |
+
# window=hann, center=not self.causal, normalized=self.normalized)
|
| 177 |
+
# return spec.contiguous()
|
| 178 |
+
|
| 179 |
+
# def complex_spectrogram(self, audio):
|
| 180 |
+
# '''
|
| 181 |
+
# audio: wave signal as th.Tensor
|
| 182 |
+
# return: th.Tensor of size channels x frequencies x time_steps (channels x y_axis x x_axis)
|
| 183 |
+
# '''
|
| 184 |
+
# self._convert_format(audio, expected_dims=2)
|
| 185 |
+
# audio = self._preemphasis(audio)
|
| 186 |
+
# return self.stft(audio)
|
| 187 |
+
|
| 188 |
+
# def magnitude_phase(self, audio):
|
| 189 |
+
# '''
|
| 190 |
+
# audio: wave signal as th.Tensor
|
| 191 |
+
# return: tuple containing two th.Tensor of size channels x frequencies x time_steps for magnitude and phase spectrum
|
| 192 |
+
# '''
|
| 193 |
+
# stft = self.complex_spectrogram(audio)
|
| 194 |
+
# return self._magphase(stft)
|
| 195 |
+
|
| 196 |
+
# def mag_spectrogram(self, audio):
|
| 197 |
+
# '''
|
| 198 |
+
# audio: wave signal as th.Tensor
|
| 199 |
+
# return: magnitude spectrum as th.Tensor of size channels x frequencies x time_steps for magnitude and phase spectrum
|
| 200 |
+
# '''
|
| 201 |
+
# return self.magnitude_phase(audio)[0]
|
| 202 |
+
|
| 203 |
+
# def power_spectrogram(self, audio):
|
| 204 |
+
# '''
|
| 205 |
+
# audio: wave signal as th.Tensor
|
| 206 |
+
# return: power spectrum as th.Tensor of size channels x frequencies x time_steps for magnitude and phase spectrum
|
| 207 |
+
# '''
|
| 208 |
+
# return th.pow(self.mag_spectrogram(audio), 2.0)
|
| 209 |
+
|
| 210 |
+
# def phase_spectrogram(self, audio):
|
| 211 |
+
# '''
|
| 212 |
+
# audio: wave signal as th.Tensor
|
| 213 |
+
# return: phase spectrum as th.Tensor of size channels x frequencies x time_steps for magnitude and phase spectrum
|
| 214 |
+
# '''
|
| 215 |
+
# return self.magnitude_phase(audio)[1]
|
| 216 |
+
|
| 217 |
+
# def mel_spectrogram(self, audio, n_mels):
|
| 218 |
+
# '''
|
| 219 |
+
# audio: wave signal as th.Tensor
|
| 220 |
+
# n_mels: number of bins used for mel scale warping
|
| 221 |
+
# return: mel spectrogram as th.Tensor of size channels x n_mels x time_steps for magnitude and phase spectrum
|
| 222 |
+
# '''
|
| 223 |
+
# spec = self.power_spectrogram(audio)
|
| 224 |
+
# mel_warping = ta.transforms.MelScale(n_mels, self.sample_rate)
|
| 225 |
+
# return mel_warping(spec)
|
| 226 |
+
|
| 227 |
+
# def complex_spec2wav(self, complex_spec, length):
|
| 228 |
+
# '''
|
| 229 |
+
# inverse stft
|
| 230 |
+
# complex_spec: complex spectrum as th.Tensor of size channels x frequencies x time_steps x 2 (real part/imaginary part)
|
| 231 |
+
# length: length of the audio to be reconstructed (in frames)
|
| 232 |
+
# '''
|
| 233 |
+
# complex_spec = self._convert_format(complex_spec, expected_dims=4)
|
| 234 |
+
# hann = th.hann_window(self.win_length)
|
| 235 |
+
# hann = hann.cuda() if complex_spec.is_cuda else hann
|
| 236 |
+
# wav = ta.functional.istft(complex_spec, n_fft=self.fft_bins, hop_length=self.hop_length, win_length=self.win_length, window=hann, length=length, center=not self.causal)
|
| 237 |
+
# wav = self._revert_preemphasis(wav)
|
| 238 |
+
# return wav
|
| 239 |
+
|
| 240 |
+
# def magphase2wav(self, mag_spec, phase_spec, length):
|
| 241 |
+
# '''
|
| 242 |
+
# reconstruction of wav signal from magnitude and phase spectrum
|
| 243 |
+
# mag_spec: magnitude spectrum as th.Tensor of size channels x frequencies x time_steps
|
| 244 |
+
# phase_spec: phase spectrum as th.Tensor of size channels x frequencies x time_steps
|
| 245 |
+
# length: length of the audio to be reconstructed (in frames)
|
| 246 |
+
# '''
|
| 247 |
+
# mag_spec = self._convert_format(mag_spec, expected_dims=3)
|
| 248 |
+
# phase_spec = self._convert_format(phase_spec, expected_dims=3)
|
| 249 |
+
# complex_spec = th.stack([mag_spec * th.cos(phase_spec), mag_spec * th.sin(phase_spec)], dim=-1)
|
| 250 |
+
# return self.complex_spec2wav(complex_spec, length)
|
| 251 |
+
|
mono2binaural/src/warping.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) Facebook, Inc. and its affiliates.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
|
| 5 |
+
This source code is licensed under the license found in the
|
| 6 |
+
LICENSE file in the root directory of this source tree.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import torch as th
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class TimeWarperFunction(th.autograd.Function):
|
| 15 |
+
|
| 16 |
+
@staticmethod
|
| 17 |
+
def forward(ctx, input, warpfield):
|
| 18 |
+
'''
|
| 19 |
+
:param ctx: autograd context
|
| 20 |
+
:param input: input signal (B x 2 x T)
|
| 21 |
+
:param warpfield: the corresponding warpfield (B x 2 x T)
|
| 22 |
+
:return: the warped signal (B x 2 x T)
|
| 23 |
+
'''
|
| 24 |
+
ctx.save_for_backward(input, warpfield)
|
| 25 |
+
# compute index list to lookup warped input values
|
| 26 |
+
idx_left = warpfield.floor().type(th.long)
|
| 27 |
+
idx_right = th.clamp(warpfield.ceil().type(th.long), max=input.shape[-1]-1)
|
| 28 |
+
# compute weight for linear interpolation
|
| 29 |
+
alpha = warpfield - warpfield.floor()
|
| 30 |
+
# linear interpolation
|
| 31 |
+
output = (1 - alpha) * th.gather(input, 2, idx_left) + alpha * th.gather(input, 2, idx_right)
|
| 32 |
+
return output
|
| 33 |
+
|
| 34 |
+
@staticmethod
|
| 35 |
+
def backward(ctx, grad_output):
|
| 36 |
+
input, warpfield = ctx.saved_tensors
|
| 37 |
+
# compute index list to lookup warped input values
|
| 38 |
+
idx_left = warpfield.floor().type(th.long)
|
| 39 |
+
idx_right = th.clamp(warpfield.ceil().type(th.long), max=input.shape[-1]-1)
|
| 40 |
+
# warpfield gradient
|
| 41 |
+
grad_warpfield = th.gather(input, 2, idx_right) - th.gather(input, 2, idx_left)
|
| 42 |
+
grad_warpfield = grad_output * grad_warpfield
|
| 43 |
+
# input gradient
|
| 44 |
+
grad_input = th.zeros(input.shape, device=input.device)
|
| 45 |
+
alpha = warpfield - warpfield.floor()
|
| 46 |
+
grad_input = grad_input.scatter_add(2, idx_left, grad_output * (1 - alpha)) + \
|
| 47 |
+
grad_input.scatter_add(2, idx_right, grad_output * alpha)
|
| 48 |
+
return grad_input, grad_warpfield
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class TimeWarper(nn.Module):
|
| 52 |
+
|
| 53 |
+
def __init__(self):
|
| 54 |
+
super().__init__()
|
| 55 |
+
self.warper = TimeWarperFunction().apply
|
| 56 |
+
|
| 57 |
+
def _to_absolute_positions(self, warpfield, seq_length):
|
| 58 |
+
# translate warpfield from relative warp indices to absolute indices ([1...T] + warpfield)
|
| 59 |
+
temp_range = th.arange(seq_length, dtype=th.float)
|
| 60 |
+
temp_range = temp_range.cuda() if warpfield.is_cuda else temp_range
|
| 61 |
+
return th.clamp(warpfield + temp_range[None, None, :], min=0, max=seq_length-1)
|
| 62 |
+
|
| 63 |
+
def forward(self, input, warpfield):
|
| 64 |
+
'''
|
| 65 |
+
:param input: audio signal to be warped (B x 2 x T)
|
| 66 |
+
:param warpfield: the corresponding warpfield (B x 2 x T)
|
| 67 |
+
:return: the warped signal (B x 2 x T)
|
| 68 |
+
'''
|
| 69 |
+
warpfield = self._to_absolute_positions(warpfield, input.shape[-1])
|
| 70 |
+
warped = self.warper(input, warpfield)
|
| 71 |
+
return warped
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class MonotoneTimeWarper(TimeWarper):
|
| 75 |
+
|
| 76 |
+
def forward(self, input, warpfield):
|
| 77 |
+
'''
|
| 78 |
+
:param input: audio signal to be warped (B x 2 x T)
|
| 79 |
+
:param warpfield: the corresponding warpfield (B x 2 x T)
|
| 80 |
+
:return: the warped signal (B x 2 x T), ensured to be monotonous
|
| 81 |
+
'''
|
| 82 |
+
warpfield = self._to_absolute_positions(warpfield, input.shape[-1])
|
| 83 |
+
# ensure monotonicity: each warp must be at least as big as previous_warp-1
|
| 84 |
+
warpfield = th.cummax(warpfield, dim=-1)[0]
|
| 85 |
+
# print('warpfield ',warpfield.shape)
|
| 86 |
+
# warp
|
| 87 |
+
warped = self.warper(input, warpfield)
|
| 88 |
+
return warped
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class GeometricTimeWarper(TimeWarper):
|
| 92 |
+
|
| 93 |
+
def __init__(self, sampling_rate=48000):
|
| 94 |
+
super().__init__()
|
| 95 |
+
self.sampling_rate = sampling_rate
|
| 96 |
+
|
| 97 |
+
def displacements2warpfield(self, displacements, seq_length):
|
| 98 |
+
distance = th.sum(displacements**2, dim=2) ** 0.5
|
| 99 |
+
distance = F.interpolate(distance, size=seq_length)
|
| 100 |
+
warpfield = -distance / 343.0 * self.sampling_rate
|
| 101 |
+
return warpfield
|
| 102 |
+
|
| 103 |
+
def forward(self, input, displacements):
|
| 104 |
+
'''
|
| 105 |
+
:param input: audio signal to be warped (B x 2 x T)
|
| 106 |
+
:param displacements: sequence of 3D displacement vectors for geometric warping (B x 3 x T)
|
| 107 |
+
:return: the warped signal (B x 2 x T)
|
| 108 |
+
'''
|
| 109 |
+
warpfield = self.displacements2warpfield(displacements, input.shape[-1])
|
| 110 |
+
# print('Ge warpfield ', warpfield.shape)
|
| 111 |
+
# assert 1==2
|
| 112 |
+
warped = super().forward(input, warpfield)
|
| 113 |
+
return warped
|
mono2binaural/useful_ckpts/m2b/binaural_network.net
ADDED
|
Binary file (107 kB). View file
|
|
|
mono2binaural/useful_ckpts/m2b/tx_positions.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
mono2binaural/useful_ckpts/m2b/tx_positions2.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
mono2binaural/useful_ckpts/m2b/tx_positions3.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
mono2binaural/useful_ckpts/m2b/tx_positions4.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
mono2binaural/useful_ckpts/m2b/tx_positions5.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|