Spaces:
Build error
Build error
| import json | |
| from tqdm import tqdm | |
| import re | |
| import fire | |
| def tokenize_caption(input_json: str, | |
| keep_punctuation: bool = False, | |
| host_address: str = None, | |
| character_level: bool = False, | |
| zh: bool = True, | |
| output_json: str = None): | |
| """Build vocabulary from csv file with a given threshold to drop all counts < threshold | |
| Args: | |
| input_json(string): Preprossessed json file. Structure like this: | |
| { | |
| 'audios': [ | |
| { | |
| 'audio_id': 'xxx', | |
| 'captions': [ | |
| { | |
| 'caption': 'xxx', | |
| 'cap_id': 'xxx' | |
| } | |
| ] | |
| }, | |
| ... | |
| ] | |
| } | |
| threshold (int): Threshold to drop all words with counts < threshold | |
| keep_punctuation (bool): Includes or excludes punctuation. | |
| Returns: | |
| vocab (Vocab): Object with the processed vocabulary | |
| """ | |
| data = json.load(open(input_json, "r"))["audios"] | |
| if zh: | |
| from nltk.parse.corenlp import CoreNLPParser | |
| from zhon.hanzi import punctuation | |
| parser = CoreNLPParser(host_address) | |
| for audio_idx in tqdm(range(len(data)), leave=False, ascii=True): | |
| for cap_idx in range(len(data[audio_idx]["captions"])): | |
| caption = data[audio_idx]["captions"][cap_idx]["caption"] | |
| # Remove all punctuations | |
| if not keep_punctuation: | |
| caption = re.sub("[{}]".format(punctuation), "", caption) | |
| if character_level: | |
| tokens = list(caption) | |
| else: | |
| tokens = list(parser.tokenize(caption)) | |
| data[audio_idx]["captions"][cap_idx]["tokens"] = " ".join(tokens) | |
| else: | |
| from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer | |
| captions = {} | |
| for audio_idx in range(len(data)): | |
| audio_id = data[audio_idx]["audio_id"] | |
| captions[audio_id] = [] | |
| for cap_idx in range(len(data[audio_idx]["captions"])): | |
| caption = data[audio_idx]["captions"][cap_idx]["caption"] | |
| captions[audio_id].append({ | |
| "audio_id": audio_id, | |
| "id": cap_idx, | |
| "caption": caption | |
| }) | |
| tokenizer = PTBTokenizer() | |
| captions = tokenizer.tokenize(captions) | |
| for audio_idx in tqdm(range(len(data)), leave=False, ascii=True): | |
| audio_id = data[audio_idx]["audio_id"] | |
| for cap_idx in range(len(data[audio_idx]["captions"])): | |
| tokens = captions[audio_id][cap_idx] | |
| data[audio_idx]["captions"][cap_idx]["tokens"] = tokens | |
| if output_json: | |
| json.dump( | |
| { "audios": data }, open(output_json, "w"), | |
| indent=4, ensure_ascii=not zh) | |
| else: | |
| json.dump( | |
| { "audios": data }, open(input_json, "w"), | |
| indent=4, ensure_ascii=not zh) | |
| if __name__ == "__main__": | |
| fire.Fire(tokenize_caption) | |