Spaces:
Build error
Build error
| import json | |
| import os | |
| import random | |
| import re | |
| import traceback | |
| from collections import Counter | |
| from functools import partial | |
| import pandas as pd | |
| import librosa | |
| from tqdm import tqdm | |
| from data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls | |
| from data_gen.tts.wav_processors.base_processor import get_wav_processor_cls | |
| from utils.hparams import hparams | |
| from utils.multiprocess_utils import multiprocess_run_tqdm | |
| from utils.os_utils import link_file, move_file, remove_file | |
| from data_gen.tts.data_gen_utils import is_sil_phoneme, build_token_encoder | |
| class BasePreprocessor: | |
| def __init__(self): | |
| self.preprocess_args = hparams['preprocess_args'] | |
| txt_processor = self.preprocess_args['txt_processor'] | |
| self.txt_processor = get_txt_processor_cls(txt_processor) | |
| self.raw_data_dir = hparams['raw_data_dir'] | |
| self.processed_dir = hparams['processed_data_dir'] | |
| self.spk_map_fn = f"{self.processed_dir}/spk_map.json" | |
| def meta_data(self): | |
| """ | |
| :return: {'item_name': Str, 'wav_fn': Str, 'txt': Str, 'spk_name': Str, 'txt_loader': None or Func} | |
| """ | |
| raise NotImplementedError | |
| def process(self): | |
| processed_dir = self.processed_dir | |
| wav_processed_tmp_dir = f'{processed_dir}/processed_tmp' | |
| remove_file(wav_processed_tmp_dir) | |
| os.makedirs(wav_processed_tmp_dir, exist_ok=True) | |
| wav_processed_dir = f'{processed_dir}/{self.wav_processed_dirname}' | |
| remove_file(wav_processed_dir) | |
| os.makedirs(wav_processed_dir, exist_ok=True) | |
| meta_data = list(tqdm(self.meta_data(), desc='Load meta data')) | |
| item_names = [d['item_name'] for d in meta_data] | |
| assert len(item_names) == len(set(item_names)), 'Key `item_name` should be Unique.' | |
| # preprocess data | |
| phone_list = [] | |
| word_list = [] | |
| spk_names = set() | |
| process_item = partial(self.preprocess_first_pass, | |
| txt_processor=self.txt_processor, | |
| wav_processed_dir=wav_processed_dir, | |
| wav_processed_tmp=wav_processed_tmp_dir, | |
| preprocess_args=self.preprocess_args) | |
| items = [] | |
| args = [{ | |
| 'item_name': item_raw['item_name'], | |
| 'txt_raw': item_raw['txt'], | |
| 'wav_fn': item_raw['wav_fn'], | |
| 'txt_loader': item_raw.get('txt_loader'), | |
| 'others': item_raw.get('others', None) | |
| } for item_raw in meta_data] | |
| for item_, (item_id, item) in zip(meta_data, multiprocess_run_tqdm(process_item, args, desc='Preprocess')): | |
| if item is not None: | |
| item_.update(item) | |
| item = item_ | |
| if 'txt_loader' in item: | |
| del item['txt_loader'] | |
| item['id'] = item_id | |
| item['spk_name'] = item.get('spk_name', '<SINGLE_SPK>') | |
| item['others'] = item.get('others', None) | |
| phone_list += item['ph'].split(" ") | |
| word_list += item['word'].split(" ") | |
| spk_names.add(item['spk_name']) | |
| items.append(item) | |
| # add encoded tokens | |
| ph_encoder, word_encoder = self._phone_encoder(phone_list), self._word_encoder(word_list) | |
| spk_map = self.build_spk_map(spk_names) | |
| args = [{ | |
| 'ph': item['ph'], 'word': item['word'], 'spk_name': item['spk_name'], | |
| 'word_encoder': word_encoder, 'ph_encoder': ph_encoder, 'spk_map': spk_map | |
| } for item in items] | |
| for idx, item_new_kv in multiprocess_run_tqdm(self.preprocess_second_pass, args, desc='Add encoded tokens'): | |
| items[idx].update(item_new_kv) | |
| # build mfa data | |
| if self.preprocess_args['use_mfa']: | |
| mfa_dict = set() | |
| mfa_input_dir = f'{processed_dir}/mfa_inputs' | |
| remove_file(mfa_input_dir) | |
| # group MFA inputs for better parallelism | |
| mfa_groups = [i // self.preprocess_args['nsample_per_mfa_group'] for i in range(len(items))] | |
| if self.preprocess_args['mfa_group_shuffle']: | |
| random.seed(hparams['seed']) | |
| random.shuffle(mfa_groups) | |
| args = [{ | |
| 'item': item, 'mfa_input_dir': mfa_input_dir, | |
| 'mfa_group': mfa_group, 'wav_processed_tmp': wav_processed_tmp_dir, | |
| 'preprocess_args': self.preprocess_args | |
| } for item, mfa_group in zip(items, mfa_groups)] | |
| for i, (ph_gb_word_nosil, new_wav_align_fn) in multiprocess_run_tqdm( | |
| self.build_mfa_inputs, args, desc='Build MFA data'): | |
| items[i]['wav_align_fn'] = new_wav_align_fn | |
| for w in ph_gb_word_nosil.split(" "): | |
| mfa_dict.add(f"{w} {w.replace('_', ' ')}") | |
| mfa_dict = sorted(mfa_dict) | |
| with open(f'{processed_dir}/mfa_dict.txt', 'w') as f: | |
| f.writelines([f'{l}\n' for l in mfa_dict]) | |
| with open(f"{processed_dir}/{self.meta_csv_filename}.json", 'w') as f: | |
| f.write(re.sub(r'\n\s+([\d+\]])', r'\1', json.dumps(items, ensure_ascii=False, sort_keys=False, indent=1))) | |
| remove_file(wav_processed_tmp_dir) | |
| def preprocess_first_pass(cls, item_name, txt_raw, txt_processor, | |
| wav_fn, wav_processed_dir, wav_processed_tmp, | |
| preprocess_args, txt_loader=None, others=None): | |
| try: | |
| if txt_loader is not None: | |
| txt_raw = txt_loader(txt_raw) | |
| ph, txt, word, ph2word, ph_gb_word = cls.txt_to_ph(txt_processor, txt_raw, preprocess_args) | |
| wav_fn, wav_align_fn = cls.process_wav( | |
| item_name, wav_fn, | |
| hparams['processed_data_dir'], | |
| wav_processed_tmp, preprocess_args) | |
| # wav for binarization | |
| ext = os.path.splitext(wav_fn)[1] | |
| os.makedirs(wav_processed_dir, exist_ok=True) | |
| new_wav_fn = f"{wav_processed_dir}/{item_name}{ext}" | |
| move_link_func = move_file if os.path.dirname(wav_fn) == wav_processed_tmp else link_file | |
| move_link_func(wav_fn, new_wav_fn) | |
| return { | |
| 'txt': txt, 'txt_raw': txt_raw, 'ph': ph, | |
| 'word': word, 'ph2word': ph2word, 'ph_gb_word': ph_gb_word, | |
| 'wav_fn': new_wav_fn, 'wav_align_fn': wav_align_fn, | |
| 'others': others | |
| } | |
| except: | |
| traceback.print_exc() | |
| print(f"| Error is caught. item_name: {item_name}.") | |
| return None | |
| def txt_to_ph(txt_processor, txt_raw, preprocess_args): | |
| txt_struct, txt = txt_processor.process(txt_raw, preprocess_args) | |
| ph = [p for w in txt_struct for p in w[1]] | |
| ph_gb_word = ["_".join(w[1]) for w in txt_struct] | |
| words = [w[0] for w in txt_struct] | |
| # word_id=0 is reserved for padding | |
| ph2word = [w_id + 1 for w_id, w in enumerate(txt_struct) for _ in range(len(w[1]))] | |
| return " ".join(ph), txt, " ".join(words), ph2word, " ".join(ph_gb_word) | |
| def process_wav(item_name, wav_fn, processed_dir, wav_processed_tmp, preprocess_args): | |
| processors = [get_wav_processor_cls(v) for v in preprocess_args['wav_processors']] | |
| processors = [k() for k in processors if k is not None] | |
| if len(processors) >= 1: | |
| sr_file = librosa.core.get_samplerate(wav_fn) | |
| output_fn_for_align = None | |
| ext = os.path.splitext(wav_fn)[1] | |
| input_fn = f"{wav_processed_tmp}/{item_name}{ext}" | |
| link_file(wav_fn, input_fn) | |
| for p in processors: | |
| outputs = p.process(input_fn, sr_file, wav_processed_tmp, processed_dir, item_name, preprocess_args) | |
| if len(outputs) == 3: | |
| input_fn, sr, output_fn_for_align = outputs | |
| else: | |
| input_fn, sr = outputs | |
| if output_fn_for_align is None: | |
| return input_fn, input_fn | |
| else: | |
| return input_fn, output_fn_for_align | |
| else: | |
| return wav_fn, wav_fn | |
| def _phone_encoder(self, ph_set): | |
| ph_set_fn = f"{self.processed_dir}/phone_set.json" | |
| if self.preprocess_args['reset_phone_dict'] or not os.path.exists(ph_set_fn): | |
| ph_set = sorted(set(ph_set)) | |
| json.dump(ph_set, open(ph_set_fn, 'w'), ensure_ascii=False) | |
| print("| Build phone set: ", ph_set) | |
| else: | |
| ph_set = json.load(open(ph_set_fn, 'r')) | |
| print("| Load phone set: ", ph_set) | |
| return build_token_encoder(ph_set_fn) | |
| def _word_encoder(self, word_set): | |
| word_set_fn = f"{self.processed_dir}/word_set.json" | |
| if self.preprocess_args['reset_word_dict']: | |
| word_set = Counter(word_set) | |
| total_words = sum(word_set.values()) | |
| word_set = word_set.most_common(hparams['word_dict_size']) | |
| num_unk_words = total_words - sum([x[1] for x in word_set]) | |
| word_set = ['<BOS>', '<EOS>'] + [x[0] for x in word_set] | |
| word_set = sorted(set(word_set)) | |
| json.dump(word_set, open(word_set_fn, 'w'), ensure_ascii=False) | |
| print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words}," | |
| f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.") | |
| else: | |
| word_set = json.load(open(word_set_fn, 'r')) | |
| print("| Load word set. Size: ", len(word_set), word_set[:10]) | |
| return build_token_encoder(word_set_fn) | |
| def preprocess_second_pass(cls, word, ph, spk_name, word_encoder, ph_encoder, spk_map): | |
| word_token = word_encoder.encode(word) | |
| ph_token = ph_encoder.encode(ph) | |
| spk_id = spk_map[spk_name] | |
| return {'word_token': word_token, 'ph_token': ph_token, 'spk_id': spk_id} | |
| def build_spk_map(self, spk_names): | |
| spk_map = {x: i for i, x in enumerate(sorted(list(spk_names)))} | |
| assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map) | |
| print(f"| Number of spks: {len(spk_map)}, spk_map: {spk_map}") | |
| json.dump(spk_map, open(self.spk_map_fn, 'w'), ensure_ascii=False) | |
| return spk_map | |
| def build_mfa_inputs(cls, item, mfa_input_dir, mfa_group, wav_processed_tmp, preprocess_args): | |
| item_name = item['item_name'] | |
| wav_align_fn = item['wav_align_fn'] | |
| ph_gb_word = item['ph_gb_word'] | |
| ext = os.path.splitext(wav_align_fn)[1] | |
| mfa_input_group_dir = f'{mfa_input_dir}/{mfa_group}' | |
| os.makedirs(mfa_input_group_dir, exist_ok=True) | |
| new_wav_align_fn = f"{mfa_input_group_dir}/{item_name}{ext}" | |
| move_link_func = move_file if os.path.dirname(wav_align_fn) == wav_processed_tmp else link_file | |
| move_link_func(wav_align_fn, new_wav_align_fn) | |
| ph_gb_word_nosil = " ".join(["_".join([p for p in w.split("_") if not is_sil_phoneme(p)]) | |
| for w in ph_gb_word.split(" ") if not is_sil_phoneme(w)]) | |
| with open(f'{mfa_input_group_dir}/{item_name}.lab', 'w') as f_txt: | |
| f_txt.write(ph_gb_word_nosil) | |
| return ph_gb_word_nosil, new_wav_align_fn | |
| def load_spk_map(self, base_dir): | |
| spk_map_fn = f"{base_dir}/spk_map.json" | |
| spk_map = json.load(open(spk_map_fn, 'r')) | |
| return spk_map | |
| def load_dict(self, base_dir): | |
| ph_encoder = build_token_encoder(f'{base_dir}/phone_set.json') | |
| word_encoder = build_token_encoder(f'{base_dir}/word_set.json') | |
| return ph_encoder, word_encoder | |
| def meta_csv_filename(self): | |
| return 'metadata' | |
| def wav_processed_dirname(self): | |
| return 'wav_processed' |