File size: 5,814 Bytes
04ff8fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab78c01
04ff8fc
 
 
ab78c01
 
 
 
 
 
 
 
04ff8fc
88dc9bb
 
c94fbf5
0934b8b
5b3714e
c94fbf5
 
 
 
04ff8fc
 
 
c94fbf5
 
 
 
04ff8fc
 
c94fbf5
04ff8fc
 
 
 
c94fbf5
 
 
 
 
 
 
 
62b1efd
8ddfacb
 
 
 
 
 
 
 
c94fbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62b1efd
c94fbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ff8fc
c94fbf5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import sys
sys.path.append("./")

import torch
from torchvision import transforms
from src.transformer import Transformer2DModel
from src.pipeline import Pipeline
from src.scheduler import Scheduler
from transformers import (
    CLIPTextModelWithProjection,
    CLIPTokenizer,
)
from diffusers import VQModel
import gradio as gr
import spaces 

device = 'cuda' if torch.cuda.is_available() else 'cpu'

model_path = "MeissonFlow/Meissonic"
model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer")
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae")
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer")
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler)
pipe.to(device)

MAX_SEED = 2**32 - 1
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed or seed == 0:
        seed = torch.randint(0, MAX_SEED, (1,)).item()
    torch.manual_seed(seed)
    
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps
    ).images[0]
    
    return image, seed

# Default negative prompt
default_negative_prompt = "worst quality, normal quality, low quality, low res, blurry, distortion, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch, duplicate, ugly, monochrome, horror, geometry, mutation, disgusting, bad anatomy, bad proportions, bad quality, deformed, disconnected limbs, out of frame, out of focus, dehydrated, disfigured, extra arms, extra limbs, extra hands, fused fingers, gross proportions, long neck, jpeg, malformed limbs, mutated, mutated hands, mutated limbs, missing arms, missing fingers, picture frame, poorly drawn hands, poorly drawn face, collage, pixel, pixelated, grainy, color aberration, amputee, autograph, bad illustration, beyond the borders, blank background, body out of frame, boring background, branding, cut off, dismembered, disproportioned, distorted, draft, duplicated features, extra fingers, extra legs, fault, flaw, grains, hazy, identifying mark, improper scale, incorrect physiology, incorrect ratio, indistinct, kitsch, low resolution"

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

examples = [
    "Modern Architecture render with pleasing aesthetics.",
    "Two actors are posing for a pictur with one wearing a black and white face paint.",
    "A large body of water with a rock in the middle and mountains in the background.",
    "A white and blue coffee mug with a picture of a man on it.",
    "A statue of a man with a crown on his head.",
    "A man in a yellow wet suit is holding a big black dog in the water.",
    "A white table with a vase of flowers and a cup of coffee on top of it.",
    "A woman stands on a dock in the fog.",
    "A woman is standing next to a picture of another woman."
]

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Meissonic Text-to-Image Generator")
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value=default_negative_prompt,
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=9.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=50,
                )
        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=generate_image,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

demo.launch()