import os from io import BytesIO import pandas as pd from fastapi import APIRouter, UploadFile, File, HTTPException from fastapi.responses import StreamingResponse, JSONResponse from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient from dotenv import load_dotenv from docx import Document import re # Load environment variables load_dotenv() router = APIRouter() @router.post("/convert-to-markdown") async def convert_to_markdown(file: UploadFile = File(...)): """ Convert a PDF file to markdown format. Args: file: The PDF file to convert Returns: StreamingResponse: Markdown file """ try: # Read the uploaded file content content = await file.read() # Save the content to a temporary file temp_pdf_path = "temp." + file.filename.split('.')[-1] with open(temp_pdf_path, "wb") as f: f.write(content) # Analyze the document result = analyze_document(temp_pdf_path) # Create markdown file temp_md_path = "temp.md" create_markdown_file(result, temp_md_path) # Read the markdown file with open(temp_md_path, "rb") as f: markdown_content = f.read() # Clean up temporary files os.remove(temp_pdf_path) os.remove(temp_md_path) # Return the markdown file as a download return StreamingResponse( BytesIO(markdown_content), media_type="text/markdown", headers={ "Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}.md" } ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @router.post("/convert-to-excel") async def convert_to_excel(file: UploadFile = File(...)): """ Convert tables from markdown to Excel format. Args: file: The markdown file to convert Returns: StreamingResponse: Excel file containing all tables """ try: # Read the markdown content content = await file.read() # Save the content to a temporary file temp_pdf_path = "temp." + file.filename.split('.')[-1] with open(temp_pdf_path, "wb") as f: f.write(content) # Analyze the document result = analyze_document(temp_pdf_path) tables = [] for table in result.tables: table_data = [] for cell in table.cells: table_data.append({ "row_index": cell.row_index, "column_index": cell.column_index, "text": cell.content }) tables.append(table_data) # Create Excel file excel_buffer = create_excel_from_markdown_tables(tables) # Return the Excel file as a download return StreamingResponse( excel_buffer, media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", headers={ "Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}_tables.xlsx" } ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @router.post("/convert-to-word") async def convert_to_word(file: UploadFile = File(...)): """ Convert markdown to Word document format. Args: file: The markdown file to convert Returns: StreamingResponse: Word document file """ try: # Read the uploaded file content content = await file.read() # Save the content to a temporary file temp_pdf_path = "temp." + file.filename.split('.')[-1] with open(temp_pdf_path, "wb") as f: f.write(content) # Analyze the document result = analyze_document(temp_pdf_path) # Create word file temp_word_path = "temp.docx" create_word_file(result, temp_word_path) # Read the word file with open(temp_word_path, "rb") as f: word_content = f.read() # Clean up temporary files os.remove(temp_pdf_path) os.remove(temp_word_path) # Return the Word file as a download return StreamingResponse( BytesIO(word_content), media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document", headers={ "Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}.docx" } ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) def analyze_document(file_path): """Analyze document using Azure Form Recognizer""" endpoint = "https://aal-ocr-ai-azureapi.cognitiveservices.azure.com/" # endpoint = "https://zzaocrtool.cognitiveservices.azure.com/" key = os.getenv("AZURE_FORM_RECOGNIZER_KEY") document_analysis_client = DocumentAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) with open(file_path, "rb") as f: poller = document_analysis_client.begin_analyze_document( "prebuilt-layout", document=f ) result = poller.result() return result def extract_tables_from_markdown(markdown_text): """Extract tables from markdown text""" tables = [] current_table = [] lines = markdown_text.split('\n') in_table = False for line in lines: if '|' in line: # Skip separator lines (e.g., |---|---|) if re.match(r'^[\s|:-]+$', line): continue # Process table row cells = [cell.strip() for cell in line.split('|')[1:-1]] if cells: if not in_table: in_table = True current_table.append(cells) else: if in_table: if current_table: tables.append(current_table) current_table = [] in_table = False # Add the last table if exists if current_table: tables.append(current_table) return tables def create_excel_from_markdown_tables(tables): """Create Excel file from markdown tables""" excel_buffer = BytesIO() with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer: for i, table in enumerate(tables): df = pd.DataFrame(table) df_pivot = df.pivot(index='row_index', columns='column_index', values='text') sheet_name = f'Sheet{i+1}' df_pivot.to_excel(writer, sheet_name=sheet_name, index=False) excel_buffer.seek(0) return excel_buffer def create_markdown_file(result, output_file): """Create markdown file from analysis result""" with open(output_file, 'w', encoding='utf-8') as md_file: for page in result.pages: # md_file.write(f"### Page {page.page_number}\n\n") elements = [] elements.extend([(paragraph.bounding_regions[0].polygon[0].y + paragraph.bounding_regions[0].polygon[0].x*0.01, 'paragraph', paragraph) for paragraph in result.paragraphs if paragraph.bounding_regions[0].page_number == page.page_number]) elements.sort(key=lambda x: x[0]) page_width = page.width / 2 min_distance = float('inf') title_paragraph = None for element in elements[:5]: if element[1] == 'paragraph': paragraph = element[2] midpoint_x = (paragraph.bounding_regions[0].polygon[0].x + paragraph.bounding_regions[0].polygon[1].x) / 2 midpoint_y = paragraph.bounding_regions[0].polygon[0].y distance = ((midpoint_x - page_width) ** 2 + midpoint_y ** 2) ** 0.5 if distance < min_distance: min_distance = distance title_paragraph = paragraph if title_paragraph: elements = [element for element in elements if element[2] != title_paragraph] md_file.write(f"# {title_paragraph.content}\n\n") elements.extend([(table.bounding_regions[0].polygon[0].y + table.bounding_regions[0].polygon[0].x*0.01, 'table', table) for table in result.tables if table.bounding_regions[0].page_number == page.page_number]) elements.sort(key=lambda x: x[0]) table_cells = set() for _, element_type, element in elements: if element_type == 'paragraph': if any(is_element_inside_table(element, get_table_max_polygon(table)) for table in result.tables if table.bounding_regions[0].page_number == page.page_number): continue content = element.content.replace(":selected:", "").replace(":unselected:", "") md_file.write(f"{content}\n\n") elif element_type == 'table': for row_idx in range(element.row_count): row_content = "| " for col_idx in range(element.column_count): cell_content = "" for cell in element.cells: if cell.row_index == row_idx and cell.column_index == col_idx: cell_content = cell.content.replace(":selected:", "").replace(":unselected:", "") table_cells.add((cell.bounding_regions[0].polygon[0].x, cell.bounding_regions[0].polygon[0].y)) break row_content += f"{cell_content} | " md_file.write(row_content + "\n") md_file.write("\n") def create_word_file(result, output_file): """Create Word document from analysis result""" # Create a new Word document doc = Document() # Analyze pages for page in result.pages: doc.add_heading(f"File Page {page.page_number}", level=2) # Combine paragraphs, tables, and selection marks in the order they appear on the page elements = [] elements.extend([(paragraph.bounding_regions[0].polygon[0].y + paragraph.bounding_regions[0].polygon[0].x*0.01, 'paragraph', paragraph) for paragraph in result.paragraphs if paragraph.bounding_regions[0].page_number == page.page_number]) elements.sort(key=lambda x: x[0]) # Find the paragraph which is possible to be document title page_width = page.width / 2 min_distance = float('inf') title_paragraph = None for element in elements[:5]: if element[1] == 'paragraph': paragraph = element[2] midpoint_x = (paragraph.bounding_regions[0].polygon[0].x + paragraph.bounding_regions[0].polygon[1].x) / 2 midpoint_y = paragraph.bounding_regions[0].polygon[0].y distance = ((midpoint_x - page_width) ** 2 + midpoint_y ** 2) ** 0.5 if distance < min_distance: min_distance = distance title_paragraph = paragraph if title_paragraph: elements = [element for element in elements if element[2] != title_paragraph] title = title_paragraph doc.add_heading(title.content, level=1) # Continuous combine paragraphs, tables, and selection marks in the order they appear on the page elements.extend([(table.bounding_regions[0].polygon[0].y + table.bounding_regions[0].polygon[0].x*0.01, 'table', table) for table in result.tables if table.bounding_regions[0].page_number == page.page_number]) # Sort elements by the sum of their horizontal and vertical positions on the page elements.sort(key=lambda x: x[0]) # Track table cells to avoid duplicating content table_cells = set() for _, element_type, element in elements: if element_type == 'paragraph': # Skip lines that are part of a table if any(is_element_inside_table(element, get_table_max_polygon(table)) for table in result.tables if table.bounding_regions[0].page_number == page.page_number): continue content = element.content.replace(":selected:", "").replace(":unselected:", "") doc.add_paragraph(content) elif element_type == 'table': table = doc.add_table(rows=element.row_count, cols=element.column_count) table.style = 'Table Grid' for row_idx in range(element.row_count): row_cells = table.rows[row_idx].cells for col_idx in range(element.column_count): cell_content = "" for cell in element.cells: if cell.row_index == row_idx and cell.column_index == col_idx: cell_content = cell.content.replace(":selected:", "").replace(":unselected:", "") table_cells.add((cell.bounding_regions[0].polygon[0].x, cell.bounding_regions[0].polygon[0].y)) break row_cells[col_idx].text = cell_content # Save Word document doc.save(output_file) def format_polygon(polygon): """Format polygon coordinates to string""" if not polygon: return "N/A" return ", ".join([f"[{p.x}, {p.y}]" for p in polygon]) def get_table_max_polygon(table): # first coordination first_coordinate = table.bounding_regions[0].polygon[0] # last coordination last_coordinate = table.bounding_regions[0].polygon[2] # return max polygon return [first_coordinate, last_coordinate] def is_element_inside_table(element, table_max_polygon): # midpoint of the cell is inside table element_x = (element.bounding_regions[0].polygon[0].x + element.bounding_regions[0].polygon[2].x)/2 element_y = (element.bounding_regions[0].polygon[0].y + element.bounding_regions[0].polygon[2].y)/2 first_coordinate = table_max_polygon[0] last_coordinate = table_max_polygon[1] # no.3 and no.4 coordination!!!! need help here correct error return (first_coordinate.x <= element_x <= last_coordinate.x and first_coordinate.y <= element_y <= last_coordinate.y)