import streamlit as st import pandas as pd from persist import persist, load_widget_state import numpy as np import matplotlib.pyplot as plt global variable_output def main(): cs_body() def convert_csv(): d = {'col1': [], 'col2': []} df = pd.DataFrame(data=d, columns=['Age', 'Sex']) return df.to_csv().encode("utf-8") def cs_body(): st.header('Training Data and Methodology') st.write("Provide an overview of the Training Data and Training Procedure for this model") st.markdown('##### Training dataset') left, right = st.columns(2) left.number_input("Training set size",value=100) right.number_input("Validation set size",value=20) st.text("Demographical and clinical characteristics") left, right = st.columns(2)#, vertical_alignment ="center") left.download_button("Download Template", data=convert_csv(), file_name='file.csv') demo = right.file_uploader("Load template",type=['csv']) if demo is not None: left, right = st.columns(2)#, vertical_alignment ="center") fig, ax = plt.subplots() ax.set_title("Age distribution") ax.hist(np.random.normal(loc=40,scale=4.0,size=500)) age = left.pyplot(fig) fig, ax = plt.subplots() ax.pie([45,55],labels=["Men","Women"]) right.pyplot(fig) st.text_input("Source",placeholder="Brats challenge/ Clinic ...") st.text("Acquisition date") left, right = st.columns(2) left.date_input("From") right.date_input("To") if __name__ == '__main__': load_widget_state() main()